
Document Number: DSP1080

Date: 2014-01-14

Version: 2.0.0a

Enabled Logical Element Profile

IMPORTANT: This specification is not a standard. It does not necessarily reflect the views of the DMTF or all of its
members. Because this document is a Work in Progress, this specification may still change, perhaps profoundly.
This document is available for public review and comment until the stated expiration date.

This document expires on: 2014-06-30.

Target version for DMTF Standard: 2.0.0.

Provide any comments through the DMTF Feedback Portal: http://www.dmtf.org/standards/feedback

Document Type: Specification

Document Status: Work in Progress

Document Language: en-US

12

3

4

5

6

7
8

9

10

11

12

13

14

15

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Copyright notice

Copyright © 2007-2014 Distributed Management Task Force, Inc. (DMTF). All rights reserved.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability. Members and non-members may reproduce DMTF specifications and
documents, provided that correct attribution is given. As DMTF specifications may be revised from time to
time, the particular version and release date should always be noted.

Implementation of certain elements of this standard or proposed standard may be subject to third party
patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations
to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,
or identify any or all such third party patent right, owners or claimants, nor for any incomplete or
inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to
any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize,
disclose, or identify any such third party patent rights, or for such party’s reliance on the standard or
incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any
party implementing such standard, whether such implementation is foreseeable or not, nor to any patent
owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is
withdrawn or modified after publication, and shall be indemnified and held harmless by any party
implementing the standard from any and all claims of infringement by a patent owner for such
implementations.

For information about patents held by third-parties which have notified the DMTF that, in their opinion,
such patent may relate to or impact implementations of DMTF standards, visit http://www.dmtf.org/about/
policies/disclosures.php.

16

17

18

19

Enabled Logical Element Profile DSP1080

2 Work in Progress — Not a DMTF Standard — DMTF Confidential Version 2.0.0a

CONTENTS
Foreword .. 5
Introduction ... 6
1 Scope ... 7
2 Normative references ... 7
3 Terms and definitions ... 7

3.1 General ... 7
4 Symbols and abbreviated terms ... 8
5 Synopsis ... 8
6 Description ... 9

6.1 State and status properties ... 10
6.2 Consistency between PrimaryStatus, HealthState and OperationalStatus 11
6.3 Consistency between CommunicationStatus and OperationalStatus 11

7 Implementation ... 11
7.1 Features .. 11

7.1.1 Feature: Capabilities .. 11
7.1.2 Feature: EnabledStateRepresentation .. 12
7.1.3 Feature: EnabledStateManagement .. 13
7.1.4 Feature: AsynchronousRequestStateChange ... 14
7.1.5 Feature: ElementNameRepresentation ... 14
7.1.6 Feature: ElementNameModification .. 14

7.2 Adaptations ... 15
7.2.1 Conventions ... 15
7.2.2 Adaptation: EnabledLogicalElement: CIM_EnabledLogicalElement 16
7.2.3 Adaptation: ElementCapabilities: CIM_ElementCapabilities ... 22
7.2.4 Adaptation: EnabledLogicalElementCapabilities: CIM_EnabledLogicalElementCapabilities
.. 23
7.2.5 Adaptation: ConcreteJob: CIM_ConcreteJob .. 24

8 Use cases and state descriptions ... 24
8.1 State description: SimpleScenario .. 24
8.2 State description: ResetStateTransitions .. 25

8.2.1 Introduction and initial state ... 25
8.2.2 Successful reset request ... 26
8.2.3 Transitioning to disabled state ... 27
8.2.4 Transitioned to disabled state .. 28
8.2.5 Transitioning to enabled state ... 29
8.2.6 Transitioned to enabled state .. 30

8.3 Use case: DetermineLevelOfStateManagement ... 31
8.4 Use case: EnableElement ... 31
8.5 Use case: DisableElement .. 32
8.6 Use case: ResetElement .. 32

DSP1080 Enabled Logical Element Profile

Version 2.0.0a Work in Progress — Not a DMTF Standard — DMTF Confidential 3

8.7 Use case: DetermineElementNameModifiable ... 33
ANNEX A (informative) Change log .. 34

Figures

Figure 1 – Adaptation diagram ... 10
Figure 2 – Object diagram for the SimpleScenario state description ... 25
Figure 3 – Object diagram for ResetStateTransitions: Original state ... 26
Figure 4 – Object diagram for ResetStateTransitions: After successful reset request 27
Figure 5 – Object diagram for ResetStateTransitions: Transitioning to disabled state 28
Figure 6 – Object diagram for ResetStateTransitions: Transitioned to disabled state 29
Figure 7 – Object diagram for ResetStateTransitions: Transitioning to enabled state 30
Figure 8 – Object diagram for ResetStateTransitions: Transitioned to enabled state 31

Tables

Table 1 – Profile references .. 8
Table 2 – Features .. 8
Table 3 – Adaptations ... 9
Table 4 – Use cases and state descriptions ... 9
Table 5 – Consistency between PrimaryStatus, HealthState and OperationalStatus[0] 11
Table 6 – Consistency between CommunicationStatus and OperationalStatus[] 11
Table 7 – EnabledLogicalElement: Element requirements ... 16
Table 8 – Allowable values for OperationalStatus[0] .. 19
Table 9 – RequestStateChange(): Parameter requirements ... 20
Table 10 – EnabledLogicalElement.RequestStateChange(): Return values ... 20
Table 11 – ElementCapabilities: Element requirements ... 22
Table 12 – EnabledLogicalElementCapabilities: Element requirements .. 23
Table 13 – ConcreteJob: Element requirements .. 24
Table 14 – Change log ... 34

20

21

22

Enabled Logical Element Profile DSP1080

4 Work in Progress — Not a DMTF Standard — DMTF Confidential Version 2.0.0a

Foreword
This document was prepared by the DMTF Architecture Working Group

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability. For information about the DMTF, see http://www.dmtf.org.

Acknowledgements

DMTF acknowledges the following individuals for their contributions to this document:

• Andreas Maier, IBM (Editor)

• Jon Hass, Dell Inc. (Editor of V1.0.0)

• Khachatur Papanyan, Dell Inc. (Editor of V1.0.0)

• Barb Craig, HP

• George Ericson, EMC

• Steve Hand, Symantec

• Jeff Hilland, HP

• David Hines, Intel

• Joe Kozlowski, Dell Inc.

• John Leung, Intel

• Aaron Merkin, IBM

• Christina Shaw, HP

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

DSP1080 Enabled Logical Element Profile

Version 2.0.0a Work in Progress — Not a DMTF Standard — DMTF Confidential 5

Introduction
The information in this specification and referenced specifications should be sufficient for a provider or
consumer of this data to identify unambiguously the classes, properties, methods, and values that shall
be instantiated and manipulated to represent and manage the common aspects of enabled logical
elements that are modeled using the DMTF CIM core and extended model definitions.

The target audience for this specification is implementers who are writing CIM-based providers or
consumers of management interfaces that represent the components described in this document.

Document conventions

Typographical conventions

The following typographical conventions are used in this document:

• Document titles are marked in italics.

• Important terms that are used for the first time are marked in italics.

• Terms include a link to the term definition in the "Terms and definitions" clause, enabling easy
navigation to the term definition.

OCL usage conventions

Constraints in this document are specified using OCL (see OCL 2.0).

OCL statements are in monospaced font.

39

40

41

42

43

44

45

46

47

48

49

50

Enabled Logical Element Profile DSP1080

6 Work in Progress — Not a DMTF Standard — DMTF Confidential Version 2.0.0a

Enabled Logical Element Profile

1 Scope
The Enabled Logical Element Profile is a pattern profile that extends the management capabilities of
referencing profiles by adding the capability to represent any enabled logical element. This profile
describes common requirements for modeling the variety of enabled logical elements within managed
systems including enabled state management, health state, and operational status.

2 Normative references
The following referenced documents are indispensable for the application of this document. For dated or
versioned references, only the edition cited (including any corrigenda or DMTF update versions) applies.
For references without a date or version, the latest published edition of the referenced document
(including any corrigenda or DMTF update versions) applies.

DMTF DSP0004, CIM Infrastructure Specification 2.7,
http://www.dmtf.org/standards/published_documents/DSP0004_2.7.pdf

DMTF DSP0223, Generic Operations 1.1,
http://www.dmtf.org/standards/published_documents/DSP0223_1.1.pdf

DMTF DSP1001, Management Profile Specification Usage Guide 1.2,
http://www.dmtf.org/standards/published_documents/DSP1001_1.2.pdf

DMTF DSP1103, Job Control Profile 1.0,
http://www.dmtf.org/standards/published_documents/DSP1103_1.0.pdf

OMG formal/06-05-01, Object Constraint Language 2.0,
http://www.omg.org/spec/OCL/2.0/

ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards,
http://isotc.iso.org/livelink/livelink?func=ll&objId=4230456&objAction=browse&sort=subtype

3 Terms and definitions
In this document, some terms have a specific meaning beyond the normal English meaning. Those terms
are defined in this clause.

3.1 General

The terms "shall" ("required"), "shall not", "should" ("recommended"), "should not" ("not recommended"),
"may", "need not" ("not required"), "can" and "cannot" in this document are to be interpreted as described
in ISO/IEC Directives, Part2, Annex H. The terms in parenthesis are alternatives for the preceding term,
for use in exceptional cases when the preceding term cannot be used for linguistic reasons. Note that
ISO/IEC Directives, Part2, Annex H specifies additional alternatives. Occurrences of such additional
alternatives shall be interpreted in their normal English meaning in this document.

The terms "clause", "subclause", "paragraph", "annex" in this document are to be interpreted as described
in ISO/IEC Directives, Part2, Clause 5.

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

DSP1080 Enabled Logical Element Profile

Version 2.0.0a Work in Progress — Not a DMTF Standard — DMTF Confidential 7

The terms "normative" and "informative" in this document are to be interpreted as described in ISO/IEC
Directives, Part2, Clause 3. In this document, clauses, subclauses or annexes indicated with
"(informative)" as well as notes and examples do not contain normative content.

The terms defined in DSP0004, DSP0223, and DSP1001 apply to this document.

The following additional terms are defined in this document.

3.2
enabled logical element

a logical element that has a concept of enabled state associated with it.

4 Symbols and abbreviated terms
The abbreviations defined in DSP0004, DSP0223, and DSP1001 apply to this document.

This document does not define any additional abbreviations.

5 Synopsis
Profile name: Enabled Logical Element

Version: 2.0.0

Organization: DMTF

Abstract: No

Profile type: Pattern

Schema: DMTF CIM 2.24

The Enabled Logical Element profile is a pattern profile that extends the management capability of the
referencing profiles by adding a common representation of enabled logical elements.

Table 1 identifies the profile references defined in this profile.

Table 1 – Profile references

Profile
reference name

Profile
name

Organi-
zation Version Relation-

ship Description

JobControl Job
Control DMTF 1.0 Conditional

Condition:

The AsynchronousRequestStateChange
feature is implemented.

Table 2 identifies the features defined in this profile.

Table 2 – Features

Feature Requirement Description

Capabilities Conditional See 7.1.1.

EnabledStateRepresentation Conditional See 7.1.2.

EnabledStateManagement Conditional See 7.1.3.

AsynchronousRequestStateChange Optional See 7.1.4.

67

68

69
70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

Enabled Logical Element Profile DSP1080

8 Work in Progress — Not a DMTF Standard — DMTF Confidential Version 2.0.0a

Feature Requirement Description

ElementNameRepresentation Conditional See 7.1.5.

ElementNameModification Optional See 7.1.6.

Table 3 identifies the class adaptations defined in this profile.

Table 3 – Adaptations

Adaptation Elements Requirement Description

Instantiated, embedded and abstract adaptations
EnabledLogicalElement CIM_EnabledLogicalElement Mandatory See 7.2.2.

ElementCapabilities CIM_ElementCapabilities Conditional See 7.2.3.

EnabledLogicalElementCapabilities CIM_EnabledLogicalElementCapabilities Conditional See 7.2.4.

ConcreteJob CIM_ConcreteJob See embedding
elements See 7.2.5.

Indications and exceptions
This profile does not define any such adaptations.

Table 4 identifies the use cases and state descriptions defined in this profile.

Table 4 – Use cases and state descriptions

Name Description

State description: SimpleScenario See 8.1.

State description: ResetStateTransitions See 8.2.

Use case: DetermineLevelOfStateManagement See 8.3.

Use case: EnableElement See 8.4.

Use case: DisableElement See 8.5.

Use case: ResetElement See 8.6.

Use case: DetermineElementNameModifiable See 8.7.

6 Description
The Enabled Logical Element profile is a pattern profile that describes the common set of attributes and
behavior for enabled logical elements. The profile also specifies a set of properties representing the
enabled state, the requested state and the current operational and health status of managed elements,
an optional method for the initiation of enabled state changes, and an optional capability class conveying
information about supported requested states and support for client state management and client
modification of the ElementName property.

The adaptation diagram in Figure 1 shows all class usages (adaptations) defined in this profile.

87

88

89

90

91

92

93

DSP1080 Enabled Logical Element Profile

Version 2.0.0a Work in Progress — Not a DMTF Standard — DMTF Confidential 9

Figure 1 – Adaptation diagram

The EnabledLogicalElement class adaptation contains properties to represent the enabled state, different
aspects of the operational status, and health state. The EnabledLogicalElementCapabilities adaptation
associated to the EnabledLogicalElement through ElementCapabilities represents the capabilities of the
associated enabled logical element.

6.1 State and status properties

The current state and status of an enabled logical element is represented using the following properties
on its EnabledLogicalElement instance:

• EnabledState, representing the enabled state of the element, using values such as Enabled and
Disabled

• PrimaryStatus, representing the primary condition of the element, using values such as OK,
Degraded, and Error that map to the commonly used "green", "yellow", and "red" conditions

• DetailedStatus, representing a more detailed condition of the element, that expands upon the
value of the PrimaryStatus property

• HealthState, representing the health state of the element

• OperatingStatus, representing the precise operational status of the element and can be used for
providing more detail with respect to the value of the EnabledState property

• CommunicationStatus, representing the ability of the implementation to communicate with the
element.

• OperationalStatus (an array property), representing an operational status of the element. This
property covers a number of different areas; the properties PrimaryStatus, DetailedStatus,
OperatingStatus, and CommunicationStatus represent the same information in a more specific
way and should be used in new profiles instead of OperationalStatus.

94

95

96

97

98

99

100

101

102

103

104

105

106

Enabled Logical Element Profile DSP1080

10 Work in Progress — Not a DMTF Standard — DMTF Confidential Version 2.0.0a

6.2 Consistency between PrimaryStatus, HealthState and OperationalStatus

Non-Null values of the properties PrimaryStatus, HealthState, and of the first array entry of
OperationalStatus (that is, OperationalStatus[0]) need to be consistent as described in Table 5:

Table 5 – Consistency between PrimaryStatus, HealthState and OperationalStatus[0]

PrimaryStatus HealthState OperationalStatus[0]

0 (Unkown) 0 (Unkown) 0 (Unkown)

1 (OK) 5 (OK) 2 (OK)

2 (Degraded) 10 (Degraded/Warning) 3 (Degraded)

2 (Degraded) 15 (Minor Failure) 3 (Degraded)

3 (Error) 20 (Major Failure) 6 (Error)

3 (Error) 25 (Critical Failure) 6 (Error)

3 (Error) 30 (Non-recoverable Error) 6 (Error)

6.3 Consistency between CommunicationStatus and OperationalStatus

If the OperationalStatus property is non-Null (that is, implemented) and any of its array entries has one of
the values listed in Table 6, the CommunicationStatus property if non-Null (that is, implemented) needs to
have the corresponding value listed in Table 6.

Table 6 – Consistency between CommunicationStatus and OperationalStatus[]

OperationalStatus[] value Required value for CommunicationStatus

12 (No Contact) 4 (No Contact)

13 (Lost Communication) 3 (Lost Communication)

7 Implementation

7.1 Features

7.1.1 Feature: Capabilities

Requirement level:

Conditional

Condition:

At least one of the following is true:

• The EnabledStateManagement feature is implemented.

• The ElementNameModification feature is implemented.

Implementing this feature for an enabled logical element provides support for representing the capabilities
of the element.

This feature can be made available to clients at the granularity of EnabledLogicalElement instances.

It can be concluded that the feature is available for a EnabledLogicalElement instance if:

• The following OCL derivation constraint evaluates to a Boolean value of True.

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122123

124

DSP1080 Enabled Logical Element Profile

Version 2.0.0a Work in Progress — Not a DMTF Standard — DMTF Confidential 11

OCL context: A EnabledLogicalElement instance.
derive: self.ElementCapabilities::Capabilities->size() > 0

Explanation:

An EnabledLogicalElementCapabilities instance exists that is associated with the
EnabledLogicalElement instance through ElementCapabilities.

Otherwise, it can be concluded that the feature is not available.

7.1.2 Feature: EnabledStateRepresentation

Requirement level:

Conditional

Condition:

The EnabledStateManagement feature is implemented.

Implementing this feature for an enabled logical element provides support for representation of the
enabled state of the element.

If this feature is implemented for an enabled logical element, the following constraints apply:

• The EnabledState property in EnabledLogicalElement shall not have the value 5 (Not
Applicable), but a value that indicates the state of the element.

• The RequestedState property in EnabledLogicalElement shall not have the value 12 (Not
Applicable), but a value that indicates the last requested state of the element.

• If the TransitioningToState property in EnabledLogicalElement is non-Null (that is, implemented),
it shall not have the value 12 (Not Applicable), but a value that indicates the state transition of
the element.

If this feature is not implemented for an enabled logical element, the following constraints apply:

• The EnabledState property in EnabledLogicalElement shall have the value 5 (Not Applicable).

• The RequestedState property in EnabledLogicalElement shall have the value 12 (Not
Applicable).

• The TransitioningToState property in EnabledLogicalElement shall be Null or shall have the
value 12 (Not Applicable).

This feature can be made available to clients at the granularity of EnabledLogicalElement instances.

It can be concluded that the feature is available for a EnabledLogicalElement instance if:

• The following OCL derivation constraint evaluates to a Boolean value of True.

OCL context: A EnabledLogicalElement instance.
derive: self.EnabledState != 5 /* Not Applicable */

Explanation:

The EnabledState property of the EnabledLogicalElement instance does not have the
value 5 (Not Applicable).

Otherwise, it can be concluded that the feature is not available.

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142143

144

145

146

147

148

Enabled Logical Element Profile DSP1080

12 Work in Progress — Not a DMTF Standard — DMTF Confidential Version 2.0.0a

7.1.3 Feature: EnabledStateManagement

Requirement level:

Conditional

Condition:

The AsynchronousRequestStateChange feature is implemented.

Implementing this feature for an enabled logical element provides support for client management of the
enabled state of the element.

Implementing this feature for an enabled logical element requires that the EnabledStateRepresentation
and Capabilities features are also implemented for that element.

If this feature is implemented for an enabled logical element, the following constraints apply:

• If the EnabledLogicalElement. AvailableRequestedStates property is non-Null (that is,
implemented), it shall contain zero or more of the values contained in the
RequestedStatesSupported property of the associated EnabledLogicalElementCapabilities
instance, where zero number of values indicates that there are no available requested states. It
shall not contain any other values.

• The RequestedStatesSupported property in EnabledLogicalElementCapabilities shall contain at
least one value. The set of values in the array shall represent the supported values for the
RequestedState parameter of the RequestStateChange() method. That is, for each value there
exist conditions under which an invocation of that method with that parameter set to the value
returns 0 (Completed with No Error).

• The RequestStateChange() method in EnabledLogicalElement shall be implemented and shall
not return 1 (Unsupported).

If this feature is not implemented for an enabled logical element, the following constraints apply:

• The AvailableRequestedStates property in EnabledLogicalElement shall be Null.

• If there is an instance of EnabledLogicalElementCapabilities associated with the
EnabledLogicalElement instance, its RequestedStatesSupported property shall be Null.

• The RequestStateChange() method in EnabledLogicalElement shall either not be implemented
or if implemented, shall return 1 (Unsupported).

This feature can be made available to clients at the granularity of EnabledLogicalElement instances.

It can be concluded that the feature is available for a EnabledLogicalElement instance if:

• The following OCL derivation constraint evaluates to a Boolean value of True.

OCL context: A EnabledLogicalElement instance.
derive: self.ElementCapabilities::Capabilities.RequestedStatesSupported->size()
> 0

Explanation:

An EnabledLogicalElementCapabilities instance exists that is associated with the
EnabledLogicalElement instance through ElementCapabilities, and the
RequestedStatesSupported property of that EnabledLogicalElementCapabilities instance
contains at least one value.

Otherwise, it can be concluded that the feature is not available.

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163164

165

166

167

168

169

DSP1080 Enabled Logical Element Profile

Version 2.0.0a Work in Progress — Not a DMTF Standard — DMTF Confidential 13

7.1.4 Feature: AsynchronousRequestStateChange

Requirement level:

Optional

Implementing this feature for an enabled logical element provides support for asynchronous execution of
the RequestStateChange() method of the EnabledLogicalElement adaptation.

Implementing this feature for an enabled logical element requires that the EnabledStateManagement
feature is also implemented for that element.

If this feature is implemented for an enabled logical element, the RequestStateChange() method shall
support asynchronous execution. Note that the method implementation may decide between synchronous
and asynchronous execution on every invocation individually.

If this feature is not implemented for an enabled logical element, the RequestStateChange() method shall
not support asynchronous execution; any invocations of the method shall be performed synchronously.

This feature can be made available to clients at the granularity of EnabledLogicalElement instances.

Availability of this feature cannot be discovered by clients (other than trying the functionality provided by
the feature).

7.1.5 Feature: ElementNameRepresentation

Requirement level:

Conditional

Condition:

The ElementNameModification feature is implemented.

Implementing this feature for an enabled logical element provides support for representing its element
name (that is, the ElementName property of the EnabledLogicalElement instance representing the
element).

If this feature is implemented for an enabled logical element, the ElementName property shall be non-
Null.

If this feature is not implemented for an enabled logical element, the ElementName property shall be Null.

This feature can be made available to clients at the granularity of EnabledLogicalElement instances.

It can be concluded that the feature is available for a EnabledLogicalElement instance if:

• The following OCL derivation constraint evaluates to a Boolean value of True.

OCL context: A EnabledLogicalElement instance.
derive: self.ElementName != Null

Explanation:

The ElementName property of the EnabledLogicalElement instance is non-Null.

Otherwise, it can be concluded that the feature is not available.

7.1.6 Feature: ElementNameModification

Requirement level:

Optional

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185186

187

188

189

190

191

192

Enabled Logical Element Profile DSP1080

14 Work in Progress — Not a DMTF Standard — DMTF Confidential Version 2.0.0a

Implementing this feature for an enabled logical element provides support for client modification of its
element name (that is, the ElementName property of the EnabledLogicalElement instance representing
the element).

Implementing this feature for an enabled logical element requires that the Capabilities feature is also
implemented for that element.

If this feature is implemented for an enabled logical element, the following constraints apply:

• The ElementNameEditSupported property in EnabledLogicalElementCapabilities shall have the
value True.

• The MaxElementNameLen property in EnabledLogicalElementCapabilities shall be non-Null
(that is, implemented).

• The ElementNameMask property in EnabledLogicalElementCapabilities shall have a value that
is a regular expression defined using the syntax specified in Annex B of DSP1001.

If this feature is not implemented for an enabled logical element, the following constraints apply:

• If there is an instance of EnabledLogicalElementCapabilities associated with the
EnabledLogicalElement instance, its ElementNameEditSupported property shall have the value
False.

This feature can be made available to clients at the granularity of EnabledLogicalElement instances.

It can be concluded that the feature is available for a EnabledLogicalElement instance if:

• The following OCL derivation constraint evaluates to a Boolean value of True.

OCL context: A EnabledLogicalElement instance.
derive: self.ElementCapabilities::Capabilities.ElementNameEditSupported = True

Explanation:

An EnabledLogicalElementCapabilities instance exists that is associated with the
EnabledLogicalElement instance through ElementCapabilities, and the
ElementNameEditSupported property of that EnabledLogicalElementCapabilities instance
has the value True.

Otherwise, it can be concluded that the feature is not available.

7.2 Adaptations

7.2.1 Conventions

This profile defines operation requirements based on DSP0223.

For adaptations of ordinary classes and of associations, the requirements for operations are defined in
adaptation-specific subclauses of subclause 7.2.

For association traversal operation requirements that are specified only in the elements table of an
adaptation (i.e., without operation-specific subclauses), the names of the association adaptations to be
traversed are listed in the elements table.

The default initialization requirement level for property requirements is optional.

The default modification requirement level for property requirements is optional.

This profile repeats the effective values of certain Boolean qualifiers as part of property, method
parameter, or method return value requirements. The following convention is established: If the name of a

193

194

195

196

197

198

199

200

201

202

203204

205

206

207

208

209

210

211

212

213

214

215

216

DSP1080 Enabled Logical Element Profile

Version 2.0.0a Work in Progress — Not a DMTF Standard — DMTF Confidential 15

qualifier is listed, its effective value is True; if the qualifier name is not listed, its effective value is False.
The convention is applied in the following cases:

• In: indicates that the parameter is an input parameter

• Out: indicates that the parameter is an output parameter

• Key: indicates that the property is a key (that is, its value is part of the instance path)

• Required: indicates that the element value shall be non-Null

• Null OK: indicates explicitly that the element value may be Null for mandatory, conditional or
conditional exclusive properties. This information is not specified as a qualifier in the schema but
as an indicator in the profile.

7.2.2 Adaptation: EnabledLogicalElement: CIM_EnabledLogicalElement

7.2.2.1 General

Adaptation type: Ordinary class

Implementation type: Instantiated

A concrete subclass of the abstract schema class CIM_EnabledLogicalElement needs to be
implemented.

Requirement level:

Mandatory
This adaptation models enabled logical elements; that is, logical elements that have a concept of enabled
state associated with them.

Constraints:

OCL constraint in the context of a EnabledLogicalElement instance:
inv: if self.ElementCapabilities::Capabilities.RequestedStatesSupported->size()
> 0
then self.RequestedState != 12 /* Not Applicable */

and self.EnabledState != 5 /* Not Applicable */
else

Table 7 – EnabledLogicalElement: Element requirements

Element Requirement Description

Base adaptations
JobControl::CIM_ManagedElement (affected
element) Mandatory See JobControl::CIM_ManagedElement (affected

element).

JobControl::CIM_ManagedElement (owning
element) Mandatory See JobControl::CIM_ManagedElement (owning

element).

Properties
ElementName Conditional See 7.2.2.2

EnabledState Mandatory See 7.2.2.3

RequestedState Mandatory See 7.2.2.4

TransitioningToState Optional See 7.2.2.5

AvailableRequestedStates Optional See 7.2.2.6

HealthState Optional See 7.2.2.7

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

Enabled Logical Element Profile DSP1080

16 Work in Progress — Not a DMTF Standard — DMTF Confidential Version 2.0.0a

Element Requirement Description

PrimaryStatus Optional See 7.2.2.8

DetailedStatus Optional

OperatingStatus Optional

CommunicationStatus Optional See 7.2.2.9

OperationalStatus Optional See 7.2.2.10

Methods
RequestStateChange() Conditional See 7.2.2.11

Operations
GetInstance() Mandatory

ModifyInstance() Conditional See 7.2.2.12

EnumerateInstances() Mandatory

EnumerateInstanceNames() Mandatory

Associators() Conditional See 7.2.2.13

AssociatorNames() Conditional See 7.2.2.14

References() Conditional See 7.2.2.15

ReferenceNames() Conditional See 7.2.2.16

7.2.2.2 Property: ElementName

Requirement level:

Conditional

Condition:

The ElementNameRepresentation feature is implemented.

The value of this property shall be formatted as a free-form string of variable length (pattern “.*”).

The value of this property should be the name of the enabled logical element as it would be
communicated to an end-user. The value of this property should contain an identifier that can be used by
the end-user to differentiate that logical element from another logical element of the same type contained
in or aggregated by the same system.

For example, if the logical element is a port on a computer system with 100 ports over subordinate
systems (sub system 1 and sub system 2), then the ElementName property could have the value "port 43
on sub system 2". If the logical element were a processor on a blade system within a modular system with
two processors per blade system, then the ElementName property could have the value "processor 2 on
blade system 1".

7.2.2.3 Property: EnabledState

Requirement level:

Mandatory

The value of this property indicates the current enabled state of the enabled logical element, using any of
the values defined in its value map (see CIM Schema).

The description of the EnabledStateRepresentation feature defines additional requirements for this
property.

232

233

234

235

236

237

238

239

240

241

242

DSP1080 Enabled Logical Element Profile

Version 2.0.0a Work in Progress — Not a DMTF Standard — DMTF Confidential 17

Specializing profiles may constrain the allowable values for this property and may define particular
interpretations of those values.

When the represented enabled logical element is in transition from one state to another, the enabled state
of the element may be indeterminate. Thus, if the TransitioningToState property is non-Null, does not
have the value 5 (No Change) or 12 (Not Applicable) which represents a state transition in progress, the
EnabledState property shall have the value 0 (Unknown).

7.2.2.4 Property: RequestedState

Requirement level:

Mandatory

The value of this property indicates the last requested enabled state of the enabled logical element (as
requested through the RequestStateChange() method), using any of the values defined in its value map
(see CIM Schema).

If the implementation cannot represent the last requested enabled state, this property shall have the value
0 (Unknown).

The description of the EnabledStateRepresentation feature defines additional requirements for this
property.

Specializing profiles may constrain the allowable values for this property and may define particular
interpretations of those values.

7.2.2.5 Property: TransitioningToState

Requirement level:

Optional

The description of the EnabledStateRepresentation feature defines additional requirements for this
property.

7.2.2.6 Property: AvailableRequestedStates

Requirement level:

Optional

If this property is non-Null (that is, implemented), the requirements for this property depend on whether
the EnabledStateManagement feature is implemented for the represented enabled logical element.

7.2.2.7 Property: HealthState

Requirement level:

Optional
The value of this property indicates the health state of the represented enabled logical element, using any
of the values defined in its value map (see CIM Schema).

The value of this property needs to be consistent with non-Null values of the first array entry of the
OperationalStatus property, and with non-Null values of the PrimaryStatus property, as described in Table
5.

7.2.2.8 Property: PrimaryStatus

Requirement level:

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Enabled Logical Element Profile DSP1080

18 Work in Progress — Not a DMTF Standard — DMTF Confidential Version 2.0.0a

Optional
The value of this property indicates the primary condition of the represented enabled logical element,
using any of the values defined in its value map (see CIM Schema).

The value of this property needs to be consistent with non-Null values of the first array entry of the
OperationalStatus property, and with non-Null values of the HealthState property, as described in Table 5.

7.2.2.9 Property: CommunicationStatus

Requirement level:

Optional
The value of this property indicates the ability of the implementation to communicate with the represented
enabled logical element, using any of the values defined in its value map (see CIM Schema).

The value of this property needs to be consistent with communication related values in any array entry of
the OperationalStatus property, as described in Table 6.

7.2.2.10 Property: OperationalStatus

Requirement level:

Optional
The value of this property indicates the operational status of the represented enabled logical element,
using any of the values defined in its value map (see CIM Schema). This property may contain values in
its array entries that cover a number of different areas; the properties PrimaryStatus, DetailedStatus,
OperatingStatus, and CommunicationStatus represent the same information in a more specific way and
should be used in new profiles instead of OperationalStatus.

The value of the first array entry of this property (that is, OperationalStatus[0]) needs to be consistent with
non-Null values of the PrimaryStatus property, and with non-Null values of the HealthState property, as
described in Table 5.

Constraints:

OCL constraint in the context of a EnabledLogicalElement instance:
inv: self.OperationalStatus[0] in
{

0 /* Unknown */,
2 /* OK */,
3 /* Degraded */,
6 /* Error */

}

Explanation:

The value of the first array entry of this property (that is, OperationalStatus[0]) shall be one
of the values listed in Table 8:

Table 8 – Allowable values for OperationalStatus[0]

OperationalStatus[0]

0 (Unkown)

2 (OK)

3 (Degraded)

6 (Error)

261

262

263

264

265

266

267

268

269

270

271

272

273

274

DSP1080 Enabled Logical Element Profile

Version 2.0.0a Work in Progress — Not a DMTF Standard — DMTF Confidential 19

7.2.2.11 Method: RequestStateChange()

Requirement level:

Conditional

Condition:

The EnabledStateManagement feature is implemented.

The requirements for this method depend on whether the EnabledStateManagement feature is
implemented for the represented enabled logical element.

Invoking this method multiple times could result in earlier requests being overwritten or lost.

This method may perform its task asynchronously as part of a job that is started, or synchronously as part
of the method invocation. If a job is started, the Job parameter on return references a ConcreteJob
instance representing the started job. The implementation may support both or only one of these two
modes of operation.

Table 9 – RequestStateChange(): Parameter requirements

Parameter Description

RequestedState In, see 7.2.2.11.1

Job Out, see 7.2.2.11.2

TimeoutPeriod In, see 7.2.2.11.3

return value See 7.2.2.11.4

7.2.2.11.1 Parameter: RequestedState

Specializing profiles may constrain the allowable values for this parameter and may define particular
interpretations of those values.

7.2.2.11.2 Parameter: Job

A (non-Null) instance path to the ConcreteJob instance representing the job, if a job was started. Null, if
no job was started.

Constraints:

Referenced instances shall be of class adaptation ConcreteJob.

7.2.2.11.3 Parameter: TimeoutPeriod

Client-specified maximum amount of time the transition to a new state is supposed to take:

• Null or interval 0 – No maximum time is specified

• Non-0 interval – The value specifies the maximum time allowed

7.2.2.11.4 Return value

This method shall return one of the values specified in Table 10:

Table 10 – EnabledLogicalElement.RequestStateChange(): Return values

Value Description

0 The state change was successfully performed and no job was started.

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

Enabled Logical Element Profile DSP1080

20 Work in Progress — Not a DMTF Standard — DMTF Confidential Version 2.0.0a

Value Description

1 The method is not implemented.

2 An error has occurred (requirements for using this value are defined after this table).

4096 A job was started.

This method shall return the value 2 (Unknown or Unspecified Error) in any of the following cases:

• if the RequestedState parameter is Null.

• if the RequestedState parameter has a value that is not contained in the
RequestedStatesSupported array property of the associated EnabledLogicalElementCapabilities
instance.

• if the RequestedState parameter has a non-Null value that is not contained in the
AvailableRequestedStates array property.

7.2.2.12 Operation: ModifyInstance()

Requirement level:

Conditional

Condition:

The ElementNameModification feature is implemented.

If the ElementNameModification feature is implemented for the represented enabled logical element, the
ElementName property shall be modifiable, and this operation shall enforce the length restriction
specified in the MaxElementNameLen property and the name format specified in the ElementNameMask
property of the associated EnabledLogicalElementCapabilities instance.

7.2.2.13 Operation: Associators()

Requirement level:

Conditional

Condition:

The Capabilities feature is implemented.

7.2.2.14 Operation: AssociatorNames()

Requirement level:

Conditional

Condition:

The Capabilities feature is implemented.

7.2.2.15 Operation: References()

Requirement level:

Conditional

Condition:

The Capabilities feature is implemented.

293

294

295

296297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

DSP1080 Enabled Logical Element Profile

Version 2.0.0a Work in Progress — Not a DMTF Standard — DMTF Confidential 21

7.2.2.16 Operation: ReferenceNames()

Requirement level:

Conditional

Condition:

The Capabilities feature is implemented.

7.2.3 Adaptation: ElementCapabilities: CIM_ElementCapabilities

7.2.3.1 General

Adaptation type: Association class

Implementation type: Instantiated

Requirement level:

Conditional

Condition:

The Capabilities feature is implemented.

This adaptation models the relationship between enabled logical elements represented by
EnabledLogicalElement instances and their capabilities represented by
EnabledLogicalElementCapabilities instances.

Table 11 – ElementCapabilities: Element requirements

Element Requirement Description

Properties
ManagedElement Mandatory Key, see 7.2.3.2

Capabilities Mandatory Key, see 7.2.3.3

Operations
GetInstance() Mandatory

EnumerateInstances() Mandatory

EnumerateInstanceNames() Mandatory

7.2.3.2 Property: ManagedElement

Requirement level:

Mandatory

Constraints:

• Referenced instances shall be of class adaptation EnabledLogicalElement.

• The multiplicity of this association end is 1 .. *

7.2.3.3 Property: Capabilities

Requirement level:

Mandatory

Constraints:

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

Enabled Logical Element Profile DSP1080

22 Work in Progress — Not a DMTF Standard — DMTF Confidential Version 2.0.0a

• Referenced instances shall be of class adaptation EnabledLogicalElementCapabilities.

• The multiplicity of this association end is 0 .. 1

7.2.4 Adaptation: EnabledLogicalElementCapabilities:
CIM_EnabledLogicalElementCapabilities

7.2.4.1 General

Adaptation type: Ordinary class

Implementation type: Instantiated

Requirement level:

Conditional

Condition:

The Capabilities feature is implemented.

This adaptation models the capabilities of enabled logical elements.

Table 12 – EnabledLogicalElementCapabilities: Element requirements

Element Requirement Description

Properties
InstanceID Mandatory Key

RequestedStatesSupported Optional See 7.2.4.2

ElementNameEditSupported Mandatory See 7.2.4.3

MaxElementNameLen Conditional See 7.2.4.4

ElementNameMask Conditional See 7.2.4.5

Operations
GetInstance() Mandatory

EnumerateInstances() Mandatory

EnumerateInstanceNames() Mandatory

Associators() Mandatory

AssociatorNames() Mandatory

References() Mandatory

ReferenceNames() Mandatory

7.2.4.2 Property: RequestedStatesSupported

Requirement level:

Optional

If this property is non-Null (that is, implemented), the requirements for this property depend on whether
the EnabledStateManagement feature is implemented for the represented enabled logical element.

Specializing profiles may constrain the allowable set of values for this property.

7.2.4.3 Property: ElementNameEditSupported

Requirement level:

329
330

331

332

333

334

335

336

337

338

339

340

341

342

343

DSP1080 Enabled Logical Element Profile

Version 2.0.0a Work in Progress — Not a DMTF Standard — DMTF Confidential 23

Mandatory

7.2.4.4 Property: MaxElementNameLen

Requirement level:

Conditional

Condition:

The ElementNameModification feature is implemented.

7.2.4.5 Property: ElementNameMask

Requirement level:

Conditional

Condition:

The ElementNameModification feature is implemented.

7.2.5 Adaptation: ConcreteJob: CIM_ConcreteJob

This adaptation models a job that performs the task of a method invocation asynchronously.

Adaptation type: Ordinary class

Implementation type: Embedded

Requirement level:

Defined by its embedding elements

Table 13 – ConcreteJob: Element requirements

Element Requirement Description

Base adaptations
JobControl::CIM_ConcreteJob Mandatory See JobControl::CIM_ConcreteJob.

8 Use cases and state descriptions

8.1 State description: SimpleScenario

Figure 2 shows an object diagram for a simple scenario with enabled logical elements conforming to this
profile.

The EnabledStateManagement feature has been implemented for system1, as indicated by the fact that
values are present in the RequestedStatesSupported array property of capabilities1, and per these
values the system represented by system1 can be enabled, disabled and reset. The
ElementNameModification feature has not been implemented for system1 (as indicated by the value
False of the ElementNameEditSupported property). The system represented by system1 has been
previously requested to be reset (the RequestedState property has a value of 11 (Reset)), but is currently
still enabled (the EnabledState property has a value of 2 (Enabled)), with degraded status as indicated by
its PrimaryStatus property, whose value is correctly derived from the value of the HealthState property.

344345

346

347

348349

350

351

352353

354

355

356

357

358

359

360

361

362

363

Enabled Logical Element Profile DSP1080

24 Work in Progress — Not a DMTF Standard — DMTF Confidential Version 2.0.0a

The EnabledStateManagement feature has not been implemented for pwrsupply1. The power supply
represented by pwrsupply1 is also degraded, and reports a more granular status with the
DetailedStatus property.

Figure 2 – Object diagram for the SimpleScenario state description

8.2 State description: ResetStateTransitions

This subclause describes possible state transitions during the reset of an enabled logical element that is
initially in the enabled state.

8.2.1 Introduction and initial state

Figure 3 shows an object diagram with a system and a battery in its initial state. The battery1 instance
representing the battery is an enabled logical element and conforms to this profile. The diagram shows
only properties that are relevant for the discussion of the state transitions, so some mandatory properties
are not shown.

The battery1 instance represents a battery; its EnabledState property has the value 2 (Enabled),
indicating that the battery is currently enabled.

The RequestedState property has the value 0 (Unknown), indicating that the last requested state
transition for battery1 is unknown.

The AvailableRequestedStates array property contains the values of the enabled states the battery can
transition to, given its its current enabled state. The RequestedStatesSupported property of the
capabilities1 instance advertises all the enabled states that are possible for battery1, regardless
of its current enabled state.

364

365

366

367

368

369

370

371

372

373

DSP1080 Enabled Logical Element Profile

Version 2.0.0a Work in Progress — Not a DMTF Standard — DMTF Confidential 25

The battery represented by battery1 is currently not in transition to any other enabled state, as
indicated by the value 5 (No Change) of its TransitioningToState property. A state transition could be
initiated by executing the RequestStateChange() method, because the EnabledStateManagement
feature has been implemented for battery1. Note that a synchronous execution of the
RequestStateChange() method requires having the state transition completed upon return of the method.
As a result, the transitioning states (see 8.2.3 and 8.2.5) cannot be observed by the same client that
invokes a synchronously executing RequestStateChange() method.

Subclauses 8.2.2, 8.2.3, 8.2.4, 8.2.5, and 8.2.6 describe the different states that battery1 could go
through after the successful execution of the RequestStateChange() method with the RequestedState
parameter set to 11 (Reset), regardless whether the method execution is performed synchronously or
asynchronously.

Note that the RequestedStatesSupported property of the capabilities1 instance does not change
regardless of the current enabled state of battery1, in contrast to the AvailableRequestedStates
property of the battery1 instance which changes depending on the current enabled state of battery1.

Figure 3 – Object diagram for ResetStateTransitions: Original state

8.2.2 Successful reset request

Figure 4 shows an object diagram where battery1 has successfully received the state transitioning
request to 11 (Reset) as a result of the successful execution of the RequestStateChange() method with
the RequestedState parameter set to 11 (Reset) as indicated by the value 11 (Reset) of the
RequestedState property.

The EnabledState property of battery1 still has a value of 2 (Enabled) and the TransitioningToState
property still has a value of 5 (No Change), indicating that the battery is currently enabled and has not yet
started the state transition.

374

375

376

377

378

379

380

Enabled Logical Element Profile DSP1080

26 Work in Progress — Not a DMTF Standard — DMTF Confidential Version 2.0.0a

Figure 4 – Object diagram for ResetStateTransitions: After successful reset request

8.2.3 Transitioning to disabled state

Figure 5 shows an object diagram where battery1 is meanwhile in transition to the disabled state.

The EnabledState property of battery1 now has a value of 0 (Unknown) and the TransitioningToState
property now has a value of 3 (Disabled), indicating that the battery is currently in transition to the
disabled state. The AvailableRequestedStates property is an empty array indicating that the
implementation does not accept any state change requests at this particular time.

381

382

383

384

385

DSP1080 Enabled Logical Element Profile

Version 2.0.0a Work in Progress — Not a DMTF Standard — DMTF Confidential 27

Figure 5 – Object diagram for ResetStateTransitions: Transitioning to disabled state

8.2.4 Transitioned to disabled state

Figure 6 shows an object diagram where battery1 now has transitioned to the disabled state.

The EnabledState property of battery1 now has a value of 3 (Disabled) and the TransitioningToState
property now has a value of 5 (No Change), indicating that the battery is currently in the disabled state.
The AvailableRequestedStates property contains the value 2 (Enabled), indicating that the
implementation accepts state change requests to enable battery1 at this particular time.

386

387

388

389

390

Enabled Logical Element Profile DSP1080

28 Work in Progress — Not a DMTF Standard — DMTF Confidential Version 2.0.0a

Figure 6 – Object diagram for ResetStateTransitions: Transitioned to disabled state

8.2.5 Transitioning to enabled state

Figure 7 shows an object diagram where battery1 is now in transition back to the enabled state.

The EnabledState property of battery1 now has a value of 0 (Unknown) and the TransitioningToState
property now has a value of 2 (Enabled), indicating that battery1 is currently in transition to the enabled
state. The AvailableRequestedStates property is an empty array, indicating that the implementation does
not accept any state change requests at this particular time.

391

392

393

394

395

DSP1080 Enabled Logical Element Profile

Version 2.0.0a Work in Progress — Not a DMTF Standard — DMTF Confidential 29

Figure 7 – Object diagram for ResetStateTransitions: Transitioning to enabled state

8.2.6 Transitioned to enabled state

Figure 8 shows an object diagram where battery1 has arrived in its final state of the reset.

The EnabledState property of battery1 now has a value of 2 (Enabled) again and the
TransitioningToState property now has a value of 5 (No Change), indicating that battery1 is currently in
the enabled state. The AvailableRequestedStates property contains the values 3 (Disabled) and 11
(Reset), indicating that the implementation accepts disabling or resetting battery1 at this particular
time.

396

397

398

399

400

Enabled Logical Element Profile DSP1080

30 Work in Progress — Not a DMTF Standard — DMTF Confidential Version 2.0.0a

Figure 8 – Object diagram for ResetStateTransitions: Transitioned to enabled state

8.3 Use case: DetermineLevelOfStateManagement

This use case describes how a client can determine the level of state representation and state
management that is supported for a particular enabled logical element.

This use case has the following preconditions:

• An instance of CIM_EnabledLogicalElement is known, representing the enabled logical element.

The main flow for this use case consists of the following steps:

1. For the given CIM_EnabledLogicalElement instance, retrieve the values of its EnabledState and
RequestedState properties.

2. If the EnabledState and RequestedState properties do not have the value 12 (Not Applicable),
the representation of enabled state (see the EnabledStateRepresentation feature) is supported
for that enabled logical element; continue with step 3.

Otherwise, neither representation nor management of enabled state is supported for that
enabled logical element, and the use case is complete.

3. Find the associated instance of CIM_EnabledLogicalElementCapabilities.

4. If the CIM_EnabledLogicalElementCapabilities.RequestedStatesSupported property is a non-
empty array, management of enabled state (see the EnabledStateManagement feature) is
supported for that enabled logical element (in addition to representation of enabled state).

Otherwise, management of enabled state is not supported for that enabled logical element.

8.4 Use case: EnableElement

This use case describes how a client can enable a particular enabled logical element.

This use case has the following preconditions:

401

402

403

404

405

406

407

408409

410

411

412413

414

415

416

DSP1080 Enabled Logical Element Profile

Version 2.0.0a Work in Progress — Not a DMTF Standard — DMTF Confidential 31

• An instance of CIM_EnabledLogicalElement is known, representing the enabled logical element.

The main flow for this use case consists of the following steps:

1. Determine whether management of enabled state is supported for the enabled logical element,
as described in the DetermineLevelOfStateManagement use case.

2. If management of enabled state is supported for the enabled logical element, continue to step 3.

Otherwise, the state of the element cannot be changed by the client, and the use case ends.

3. If the AvailableRequestedStates property of the given CIM_EnabledLogicalElement instance
contains the value 2 (Enabled), continue to step 4.

Otherwise, the implementation supports enabling the enabled logical element but cannot
transition to the enabled state at this time, and the use case ends.

4. Execute the RequestStateChange() method with the value of the RequestedState parameter set
to 2 (Enabled), which requests to enable the enabled logical element.

5. If the RequestStateChange() method execution returns 0 (Success), the implementation has
successfully processed the request to transition the enabled logical element's state to 2
(Enabled).

If the RequestStateChange() method execution returns 4096 (Job Started), the implementation
has started a job to perform the state transition asynchronously.

8.5 Use case: DisableElement

This use case describes how a client can disable a particular enabled logical element.

This use case has the following preconditions:

• An instance of CIM_EnabledLogicalElement is known, representing the enabled logical element.

The main flow for this use case consists of the following steps:

1. Determine whether management of enabled state is supported for the enabled logical element,
as described in the DetermineLevelOfStateManagement use case.

2. If management of enabled state is supported for the enabled logical element, continue to step 3.

Otherwise, the state of the element cannot be changed by the client, and the use case ends.

3. If the AvailableRequestedStates property of the given CIM_EnabledLogicalElement instance
contains the value 3 (Disabled), continue to step 4.

Otherwise, the implementation supports disabling the enabled logical element but cannot
transition to the disabled state at this time, and the use case ends.

4. Execute the RequestStateChange() method with the value of the RequestedState parameter set
to 3 (Disabled), which requests to disable the enabled logical element.

5. If the RequestStateChange() method execution returns 0 (Success), the implementation has
successfully processed the request to transition the enabled logical element's state to 3
(Disabled).

If the RequestStateChange() method execution returns 4096 (Job Started), the implementation
has started a job to perform the state transition asynchronously.

8.6 Use case: ResetElement

This use case describes how a client can reset a particular enabled logical element.

417
418

419

420421

422

423424

425

426

427428

429

430

431

432

433

434

435436

437

438439

440

441

442443

444

445

446

Enabled Logical Element Profile DSP1080

32 Work in Progress — Not a DMTF Standard — DMTF Confidential Version 2.0.0a

This use case has the following preconditions:

• An instance of CIM_EnabledLogicalElement is known, representing the enabled logical element.

The main flow for this use case consists of the following steps:

1. Determine whether management of enabled state is supported for the enabled logical element,
as described in the DetermineLevelOfStateManagement use case.

2. If management of enabled state is supported for the enabled logical element, continue to step 3.

Otherwise, the state of the element cannot be changed by the client, and the use case ends.

3. If the AvailableRequestedStates property of the given CIM_EnabledLogicalElement instance
contains the value 11 (Reset), continue to step 4.

Otherwise, the implementation supports resetting the enabled logical element but cannot
transition to the reset state at this time, and the use case ends.

4. Execute the RequestStateChange() method with the value of the RequestedState parameter set
to 11 (Reset), which requests to reset the enabled logical element.

5. If the RequestStateChange() method execution returns 0 (Success), the implementation has
successfully processed the request to transition the enabled logical element's state to 11
(Reset).

If the RequestStateChange() method execution returns 4096 (Job Started), the implementation
has started a job to perform the state transition asynchronously.

8.7 Use case: DetermineElementNameModifiable

This use case describes how a client can determine whether client modification of the ElementName
property is supported for a particular enabled logical element.

This use case has the following preconditions:

• An instance of CIM_EnabledLogicalElement is known, representing the enabled logical element.

The main flow for this use case consists of the following steps:

1. Find the CIM_EnabledLogicalElementCapabilities instance that is associated with the given
CIM_EnabledLogicalElement instance.

2. Examine the value of the ElementNameEditSupported property of the associated
CIM_EnabledLogicalElementCapabilities instance.

If the property value is True, the client can modify the value of the ElementName property of the
given CIM_EnabledLogicalElement instance.

Otherwise, the client cannot modify the value of the ElementName property of the given
CIM_EnabledLogicalElement instance.

447

448

449

450451

452

453454

455

456

457458

459

460

461

462

463

464

465466

467

468

469

DSP1080 Enabled Logical Element Profile

Version 2.0.0a Work in Progress — Not a DMTF Standard — DMTF Confidential 33

ANNEX A
(informative)

Change log

Table 14 – Change log

Version Date Description

1.0.0 2009-05-18 Published as DMTF Standard

2.0.0a 2014-01-14

Published as a Work in Progress, with the following changes:

• Fixed the inconsistency that a central class was defined but DSP1033 was not
referenced, by changing the profile type to the new profile type of "pattern profile":
See DSP1001 1.2 for details on pattern profiles.

• Fixed the issue that the ElementName property was Mandatory, by making it part of
an optional feature "ElementNaming".

• Fixed the issue that the PrimaryStatus and HealthState propertes were Mandatory,
by making them Optional.

• Added functionality to the Job output parameter of RequestStateChange() by tying
it to the Job Control Profile.

• Fixed the error in the description of method RequestStateChange() that the
AvailableRequestedStates property was incorrectly attributed to class
CIM_EnabledLogicalElementCapabilities.

• Fixed the issue that the TransitioningToState property was left optional for the case
that enabled state was not represented, by requiring that it is Null or 12 (Not
Applicable) in this case.

• Fixed errors in the diagrams and descriptions of the use cases and state
descriptions.

• Restricted the values of OperationalStatus[0] of EnabledLogicalElement to
Unknown, OK, Degraded, and Error.

• Established consistency requirements between the values of PrimaryStatus,
HealthState and OperationalStatus[0] of EnabledLogicalElement.

• Established consistency requirements between the values of CommunicationStatus
and OperationalStatus[] of EnabledLogicalElement.

• Converted to MRP XML format.

• Using new generic operations names defined in DSP0223 1.0.2

470

471

472

473

474

475

476

477

478

479

480

481

482

483

Enabled Logical Element Profile DSP1080

34 Work in Progress — Not a DMTF Standard — DMTF Confidential Version 2.0.0a

	Copyright notice
	CONTENTS
	Figures
	Tables

	Foreword
	Acknowledgements

	Introduction
	Document conventions
	Typographical conventions
	OCL usage conventions

	Enabled Logical Element Profile
	Scope
	Normative references
	Terms and definitions
	General
	

	Symbols and abbreviated terms
	Synopsis
	Description
	State and status properties
	Consistency between PrimaryStatus, HealthState and OperationalStatus
	Consistency between CommunicationStatus and OperationalStatus

	Implementation
	Features
	Feature: Capabilities
	Feature: EnabledStateRepresentation
	Feature: EnabledStateManagement
	Feature: AsynchronousRequestStateChange
	Feature: ElementNameRepresentation
	Feature: ElementNameModification

	Adaptations
	Conventions
	Adaptation: EnabledLogicalElement: CIM_EnabledLogicalElement
	General
	Property: ElementName
	Property: EnabledState
	Property: RequestedState
	Property: TransitioningToState
	Property: AvailableRequestedStates
	Property: HealthState
	Property: PrimaryStatus
	Property: CommunicationStatus
	Property: OperationalStatus
	Method: RequestStateChange()
	Parameter: RequestedState
	Parameter: Job
	Parameter: TimeoutPeriod
	Return value

	Operation: ModifyInstance()
	Operation: Associators()
	Operation: AssociatorNames()
	Operation: References()
	Operation: ReferenceNames()

	Adaptation: ElementCapabilities: CIM_ElementCapabilities
	General
	Property: ManagedElement
	Property: Capabilities

	Adaptation: EnabledLogicalElementCapabilities: CIM_EnabledLogicalElementCapabilities
	General
	Property: RequestedStatesSupported
	Property: ElementNameEditSupported
	Property: MaxElementNameLen
	Property: ElementNameMask

	Adaptation: ConcreteJob: CIM_ConcreteJob

	Use cases and state descriptions
	State description: SimpleScenario
	State description: ResetStateTransitions
	Introduction and initial state
	Successful reset request
	Transitioning to disabled state
	Transitioned to disabled state
	Transitioning to enabled state
	Transitioned to enabled state

	Use case: DetermineLevelOfStateManagement
	Use case: EnableElement
	Use case: DisableElement
	Use case: ResetElement
	Use case: DetermineElementNameModifiable

	(informative)Change log

