
Introduction to the DOM

The Document Object Model (DOM) is the data representation of the objects that

comprise the structure and content of a document on the web. This guide will introduce

the DOM, look at how the DOM represents an HTML document in memory and how to

use APIs to create web content and applications.

What is the DOM?
The Document Object Model (DOM) is a programming interface for web documents. It

represents the page so that programs can change the document structure, style, and

content. The DOM represents the document as nodes and objects; that way, programming

languages can interact with the page.

A web page is a document that can be either displayed in the browser window or as the

HTML source. In both cases, it is the same document but the Document Object Model

(DOM) representation allows it to be manipulated. As an object-oriented representation of

the web page, it can be modified with a scripting language such as JavaScript.

For example, the DOM specifies that the querySelectorAll method in this code snippet

must return a list of all the <p> elements in the document:

JS

const paragraphs = document.querySelectorAll("p");

// paragraphs[0] is the first <p> element

// paragraphs[1] is the second <p> element, etc.

https://developer.mozilla.org/en-US/
https://developer.mozilla.org/en-US/docs/Glossary/HTML
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/p
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/p
www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

All of the properties, methods, and events available for manipulating and creating web

pages are organized into objects. For example, the document object that represents the

document itself, any table objects that implement the HTMLTableElement DOM interface

for accessing HTML tables, and so forth, are all objects.

The DOM is built using multiple APIs that work together. The core DOM defines the

entities describing any document and the objects within it. This is expanded upon as

needed by other APIs that add new features and capabilities to the DOM. For example, the

HTML DOM API adds support for representing HTML documents to the core DOM, and

the SVG API adds support for representing SVG documents.

DOM and JavaScript
The previous short example, like nearly all examples, is JavaScript. That is to say, it is

written in JavaScript, but uses the DOM to access the document and its elements. The

DOM is not a programming language, but without it, the JavaScript language wouldn't

have any model or notion of web pages, HTML documents, SVG documents, and their

component parts. The document as a whole, the head, tables within the document, table

headers, text within the table cells, and all other elements in a document are parts of the

document object model for that document. They can all be accessed and manipulated

using the DOM and a scripting language like JavaScript.

The DOM is not part of the JavaScript language, but is instead a Web API used to build

websites. JavaScript can also be used in other contexts. For example, Node.js runs

JavaScript programs on a computer, but provides a different set of APIs, and the DOM API

is not a core part of the Node.js runtime.

alert(paragraphs[0].nodeName);

https://developer.mozilla.org/en-US/docs/Web/API/HTMLTableElement
https://developer.mozilla.org/en-US/docs/Web/API/HTMLTableElement
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/API/HTML_DOM_API
https://developer.mozilla.org/en-US/docs/Glossary/JavaScript

The DOM was designed to be independent of any particular programming language,

making the structural representation of the document available from a single, consistent

API. Even if most web developers will only use the DOM through JavaScript,

implementations of the DOM can be built for any language, as this Python example

demonstrates:

For more information on what technologies are involved in writing JavaScript on the web,

see JavaScript technologies overview.

Accessing the DOM
You don't have to do anything special to begin using the DOM. You use the API directly in

JavaScript from within what is called a script, a program run by a browser.

When you create a script, whether inline in a <script> element or included in the web

page, you can immediately begin using the API for the document or window objects to

manipulate the document itself, or any of the various elements in the web page (the

descendant elements of the document). Your DOM programming may be something as

simple as the following example, which displays a message on the console by using the

console.log() function:

PYTHON

Python DOM example

import xml.dom.minidom as m

doc = m.parse(r"C:\Projects\Py\chap1.xml")

doc.nodeName # DOM property of document object

p_list = doc.getElementsByTagName("para")

https://developer.mozilla.org/en-US/docs/Web/JavaScript/JavaScript_technologies_overview
https://developer.mozilla.org/en-US/docs/Web/API/Document
https://developer.mozilla.org/en-US/docs/Web/API/Document
https://developer.mozilla.org/en-US/docs/Web/API/Window
https://developer.mozilla.org/en-US/docs/Web/API/Window
https://developer.mozilla.org/en-US/docs/Web/API/console/log_static
https://developer.mozilla.org/en-US/docs/Web/API/console/log_static

As it is generally not recommended to mix the structure of the page (written in HTML) and

manipulation of the DOM (written in JavaScript), the JavaScript parts will be grouped

together here, and separated from the HTML.

For example, the following function creates a new h1 element, adds text to that element,

and then adds it to the tree for the document:

HTML

<body onload="console.log('Welcome to my home page!');">

…

</body>

HTML

<html lang="en">

<head>

<script>

// run this function when the document is loaded

window.onload = () => {

// create a couple of elements in an otherwise empty HTML page

const heading = document.createElement("h1");

const headingText = document.createTextNode("Big Head!");

heading.appendChild(headingText);

document.body.appendChild(heading);

};

</script>

</head>

<body></body>

</html>

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/Heading_Elements

Fundamental data types
This page tries to describe the various objects and types in simple terms. But there are a

number of different data types being passed around the API that you should be aware of.

The following table briefly describes these data types.

Data type
(Interface)

Description

Document

When a member returns an object of type document (e.g., the

ownerDocument property of an element returns the document to which

it belongs), this object is the root document object itself. The DOM

document Reference chapter describes the document object.

Node

Every object located within a document is a node of some kind. In an

HTML document, an object can be an element node but also a text

node or attribute node.

Element

The element type is based on node . It refers to an element or a node

of type element returned by a member of the DOM API. Rather than

saying, for example, that the document.createElement() method

returns an object reference to a node , we just say that this method

Note: Because the vast majority of code that uses the DOM revolves around

manipulating HTML documents, it's common to refer to the nodes in the DOM as

elements, although strictly speaking not every node is an element.

https://developer.mozilla.org/en-US/docs/Web/API/Document
https://developer.mozilla.org/en-US/docs/Web/API/Document
https://developer.mozilla.org/en-US/docs/Web/API/Document
https://developer.mozilla.org/en-US/docs/Web/API/Document
https://developer.mozilla.org/en-US/docs/Web/API/Document
https://developer.mozilla.org/en-US/docs/Web/API/Node
https://developer.mozilla.org/en-US/docs/Web/API/Node
https://developer.mozilla.org/en-US/docs/Web/API/Element
https://developer.mozilla.org/en-US/docs/Web/API/Element
https://developer.mozilla.org/en-US/docs/Web/API/Document/createElement
https://developer.mozilla.org/en-US/docs/Web/API/Document/createElement

Data type
(Interface)

Description

returns the element that has just been created in the DOM. element

objects implement the DOM Element interface and also the more

basic Node interface, both of which are included together in this

reference. In an HTML document, elements are further enhanced by

the HTML DOM API's HTMLElement interface as well as other interfaces

describing capabilities of specific kinds of elements (for instance,

HTMLTableElement for <table> elements).

NodeList

A nodeList is an array of elements, like the kind that is returned by

the method document.querySelectorAll() . Items in a nodeList are

accessed by index in either of two ways:

• list.item(1)

• list[1]

These two are equivalent. In the first, item() is the single method on

the nodeList object. The latter uses the typical array syntax to fetch

the second item in the list.

Attr

When an attribute is returned by a member (e.g., by the

createAttribute() method), it is an object reference that exposes a

special (albeit small) interface for attributes. Attributes are nodes in

the DOM just like elements are, though you may rarely use them as

such.

NamedNodeMap
A namedNodeMap is like an array, but the items are accessed by name or

index, though this latter case is merely a convenience for

https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement
https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement
https://developer.mozilla.org/en-US/docs/Web/API/HTMLTableElement
https://developer.mozilla.org/en-US/docs/Web/API/HTMLTableElement
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/table
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/table
https://developer.mozilla.org/en-US/docs/Web/API/NodeList
https://developer.mozilla.org/en-US/docs/Web/API/NodeList
https://developer.mozilla.org/en-US/docs/Web/API/Document/querySelectorAll
https://developer.mozilla.org/en-US/docs/Web/API/Document/querySelectorAll
https://developer.mozilla.org/en-US/docs/Web/API/Attr
https://developer.mozilla.org/en-US/docs/Web/API/Attr
https://developer.mozilla.org/en-US/docs/Web/API/NamedNodeMap
https://developer.mozilla.org/en-US/docs/Web/API/NamedNodeMap

Data type
(Interface)

Description

enumeration, as they are in no particular order in the list. A

namedNodeMap has an item() method for this purpose, and you can

also add and remove items from a namedNodeMap .

There are also some common terminology considerations to keep in mind. It's common to

refer to any Attr node as an attribute , for example, and to refer to an array of DOM

nodes as a nodeList . You'll find these terms and others to be introduced and used

throughout the documentation.

DOM interfaces
This guide is about the objects and the actual things you can use to manipulate the DOM

hierarchy. There are many points where understanding how these work can be confusing.

For example, the object representing the HTML form element gets its name property from

the HTMLFormElement interface but its className property from the HTMLElement interface.

In both cases, the property you want is in that form object.

But the relationship between objects and the interfaces that they implement in the DOM

can be confusing, and so this section attempts to say a little something about the actual

interfaces in the DOM specification and how they are made available.

Interfaces and objects

Many objects implement several different interfaces. The table object, for example,

implements a specialized HTMLTableElement interface, which includes such methods as

createCaption and insertRow . But since it's also an HTML element, table implements the

https://developer.mozilla.org/en-US/docs/Web/API/Attr
https://developer.mozilla.org/en-US/docs/Web/API/Attr
https://developer.mozilla.org/en-US/docs/Web/API/HTMLTableElement
https://developer.mozilla.org/en-US/docs/Web/API/HTMLTableElement

Element interface described in the DOM Element Reference chapter. And finally, since an

HTML element is also, as far as the DOM is concerned, a node in the tree of nodes that

make up the object model for an HTML or XML page, the table object also implements the

more basic Node interface, from which Element derives.

When you get a reference to a table object, as in the following example, you routinely

use all three of these interfaces interchangeably on the object, perhaps without knowing it.

Core interfaces in the DOM

This section lists some of the most commonly-used interfaces in the DOM. The idea is not

to describe what these APIs do here but to give you an idea of the sorts of methods and

properties you will see very often as you use the DOM. These common APIs are used in

the longer examples in the DOM Examples chapter at the end of this book.

The document and window objects are the objects whose interfaces you generally use most

often in DOM programming. In simple terms, the window object represents something like

JS

const table = document.getElementById("table");

const tableAttrs = table.attributes; // Node/Element interface

for (let i = 0; i < tableAttrs.length; i++) {

// HTMLTableElement interface: border attribute

if (tableAttrs[i].nodeName.toLowerCase() === "border") {

table.border = "1";

}

}

// HTMLTableElement interface: summary attribute

table.summary = "note: increased border";

https://developer.mozilla.org/en-US/docs/Web/API/Element
https://developer.mozilla.org/en-US/docs/Web/API/Element
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Examples

the browser, and the document object is the root of the document itself. Element inherits

from the generic Node interface, and together these two interfaces provide many of the

methods and properties you use on individual elements. These elements may also have

specific interfaces for dealing with the kind of data those elements hold, as in the table

object example in the previous section.

The following is a brief list of common APIs in web and XML page scripting using the

DOM.

• document.querySelector()

• document.querySelectorAll()

• document.createElement()

• Element.innerHTML

• Element.setAttribute()

• Element.getAttribute()

• EventTarget.addEventListener()

• HTMLElement.style

• Node.appendChild()

• window.onload

• window.scrollTo()

Examples

https://developer.mozilla.org/en-US/docs/Web/API/Document/querySelector
https://developer.mozilla.org/en-US/docs/Web/API/Document/querySelector
https://developer.mozilla.org/en-US/docs/Web/API/Document/querySelectorAll
https://developer.mozilla.org/en-US/docs/Web/API/Document/querySelectorAll
https://developer.mozilla.org/en-US/docs/Web/API/Document/createElement
https://developer.mozilla.org/en-US/docs/Web/API/Document/createElement
https://developer.mozilla.org/en-US/docs/Web/API/Element/innerHTML
https://developer.mozilla.org/en-US/docs/Web/API/Element/innerHTML
https://developer.mozilla.org/en-US/docs/Web/API/Element/setAttribute
https://developer.mozilla.org/en-US/docs/Web/API/Element/setAttribute
https://developer.mozilla.org/en-US/docs/Web/API/Element/getAttribute
https://developer.mozilla.org/en-US/docs/Web/API/Element/getAttribute
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement/style
https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement/style
https://developer.mozilla.org/en-US/docs/Web/API/Node/appendChild
https://developer.mozilla.org/en-US/docs/Web/API/Node/appendChild
https://developer.mozilla.org/en-US/docs/Web/API/Window/load_event
https://developer.mozilla.org/en-US/docs/Web/API/Window/load_event
https://developer.mozilla.org/en-US/docs/Web/API/Window/scrollTo
https://developer.mozilla.org/en-US/docs/Web/API/Window/scrollTo

Setting text content

This example uses a <div> element containing a <textarea> and two <button> elements.

When the user clicks the first button we set some text in the <textarea> . When the user

clicks the second button we clear the text. We use:

• Document.querySelector() to access the <textarea> and the button

• EventTarget.addEventListener() to listen for button clicks

• Node.textContent to set and clear the text.

HTML

CSS

HTML

<div class="container">

<textarea class="story"></textarea>

<button id="set-text" type="button">Set text content</button>

<button id="clear-text" type="button">Clear text content</button>

</div>

CSS

.container {

display: flex;

gap: 0.5rem;

flex-direction: column;

}

button {

width: 200px;

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/div
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/div
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/textarea
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/textarea
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/button
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/button
https://developer.mozilla.org/en-US/docs/Web/API/Document/querySelector
https://developer.mozilla.org/en-US/docs/Web/API/Document/querySelector
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
https://developer.mozilla.org/en-US/docs/Web/API/Node/textContent
https://developer.mozilla.org/en-US/docs/Web/API/Node/textContent

JavaScript

Result

Adding a child element

This example uses a <div> element containing a <div> and two <button> elements.

When the user clicks the first button we create a new element and add it as a child of the

<div> . When the user clicks the second button we remove the child element. We use:

• Document.querySelector() to access the <div> and the buttons

• EventTarget.addEventListener() to listen for button clicks

• Document.createElement to create the element

}

JS

const story = document.body.querySelector(".story");

const setText = document.body.querySelector("#set-text");

setText.addEventListener("click", () => {

story.textContent = "It was a dark and stormy night...";

});

const clearText = document.body.querySelector("#clear-text");

clearText.addEventListener("click", () => {

story.textContent = "";

});

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/div
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/div
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/div
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/div
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/button
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/button
https://developer.mozilla.org/en-US/docs/Web/API/Document/querySelector
https://developer.mozilla.org/en-US/docs/Web/API/Document/querySelector
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
https://developer.mozilla.org/en-US/docs/Web/API/Document/createElement
https://developer.mozilla.org/en-US/docs/Web/API/Document/createElement

• Node.appendChild() to add the child

• Node.removeChild() to remove the child.

HTML

CSS

HTML

<div class="container">

<div class="parent">parent</div>

<button id="add-child" type="button">Add a child</button>

<button id="remove-child" type="button">Remove child</button>

</div>

CSS

.container {

display: flex;

gap: 0.5rem;

flex-direction: column;

}

button {

width: 100px;

}

div.parent {

border: 1px solid black;

padding: 5px;

width: 100px;

height: 100px;

}

https://developer.mozilla.org/en-US/docs/Web/API/Node/appendChild
https://developer.mozilla.org/en-US/docs/Web/API/Node/appendChild
https://developer.mozilla.org/en-US/docs/Web/API/Node/removeChild
https://developer.mozilla.org/en-US/docs/Web/API/Node/removeChild

JavaScript

div.child {

border: 1px solid red;

margin: 10px;

padding: 5px;

width: 80px;

height: 60px;

box-sizing: border-box;

}

JS

const parent = document.body.querySelector(".parent");

const addChild = document.body.querySelector("#add-child");

addChild.addEventListener("click", () => {

// Only add a child if we don't already have one

// in addition to the text node "parent"

if (parent.childNodes.length > 1) {

return;

}

const child = document.createElement("div");

child.classList.add("child");

child.textContent = "child";

parent.appendChild(child);

});

const removeChild = document.body.querySelector("#remove-child");

removeChild.addEventListener("click", () => {

const child = document.body.querySelector(".child");

parent.removeChild(child);

});

Result

Specifications
Specification

DOM Standard

Help improve MDN
Was this page helpful to you?

Yes No

Learn how to contribute.

This page was last modified on Nov 29, 2023 by MDN contributors.

https://dom.spec.whatwg.org/
https://github.com/mdn/content/blob/main/CONTRIBUTING.md
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction/contributors.txt

	Introduction to the DOM
	What is the DOM?
	DOM and JavaScript
	Accessing the DOM
	Fundamental data types
	DOM interfaces
	Interfaces and objects
	Core interfaces in the DOM

	Examples
	Setting text content
	HTML
	CSS
	JavaScript
	Result

	Adding a child element
	HTML
	CSS
	JavaScript
	Result

	Specifications
	Help improve MDN

