
Creole: Validating Overlapping Markup
Jeni Tennison, Jeni Tennison Consulting Ltd, jeni@jenitennison.com, http://www.jenitennison.com

Abstract
Overlapping structures are common in real-world documents. Structures such as comments, revisions and pages
overlap with the main document structures of sections and paragraphs. There are many ways of representing
overlapping structures: even within the confines of well-formed XML, we can use empty elements or processing
instructions as milestones to indicate their limits, and non-XML syntaxes give even more flexibility. But validating
them has always been a problem.

This paper introduces Creole (Composable Regular Expressions for Overlapping Languages etc.). Where
previous methods of validating overlapping structures split documents into separate, well-formed, sub-documents
for validation, Creole provides one grammar that defines exactly how the structures can overlap. As an extension of
Relax NG, Creole has a simple, consistent implemention based on Brzozowski derivatives that can be applied to
documents with overlapping structures, whatever their syntax. As such, Creole is a clear step forward in the support
of mark-up in real-world documents.

Introduction
One of the fundamental rules of XML is that elements nest neatly inside each other: each element's end tag must
appear before its parent's end tag. This restriction means that XML documents can be represented as a ordered,
rooted tree, which is a very handy data structure for processing.

But ordered, rooted trees aren't a natural way of representing documents. Real-world documents contain
structures that overlap each other.

Figure 1 shows a screenshot of some UK legislation from the Statute Law Database (www.statutelaw.gov.uk).
This is consolidated legislation, which means that changes that have been made to the legislation by later Acts are
highlighted, here in blue with square brackets, and explanations given in footnotes. There is no restriction on
where changes can be made, and sometimes they overlap the main structure of the document. In the example in
Figure 1, the change indicated by F24 starts at the beginning of list item (b) and continues into the paragraph that
follows the list. In other words, the change overlaps a list and a paragraph.

1

www.princexml.com
Prince 6.0 Personal Edition
This document was created with Prince,
a great way of getting web content onto paper.

0077-30/mailto:jeni@jenitennison.com
http://www.jenitennison.com/
http://www.statutelaw.gov.uk/

Figure 1. Amendments overlapping document structures

This kind of overlap occurs whenever annotations are made to a document that otherwise obeys a hierarchical
structure. The most obvious examples are revisions, such as the legislation example above, and comments, which
can overlap with both the main document structure and each other. This kind of overlap is very frequent in
documents with multiple authors; during drafting; in long-lived documents; and so on.

Figure 2 shows some more legislation, this time a Bill going through the UK Parliament, available from the
Parliamentary website (http://www.parliament.uk/business/bills_and_legislation.cfm). This is draft legislation,
which is also available in printed form, and as such needs to be referenced by Members of Parliament in a consistent
way: through page breaks and line numbers. In this example, the page break for page 4 overlaps item (c) in the list.

Creole: Validating Overlapping Markup

2

http://www.parliament.uk/business/bills_and_legislation.cfm

Figure 2. Pages and lines overlapping document structures

This example of overlap is moderately common in publishing. Publishers want to preserve information about page
breaks in the XML created for their books, so that they can recreate paginated versions in eBook form and to
facilitate searching. But a page can overlap practically anything: paragraphs, tables, lists and so on.

Finally, the hardcore of overlapping mark-up is where multiple hierarchies apply to the same document. The
classic example is the Bible, which can be viewed as a Book/Chapter/Verse hierarchy or a more rhetorical Book/
Section/Paragraph hierarchy. Multiple hierarchies also occur in the academic analysis of documents, particularly
plays and poetry, which can contain physical, syntactic and rhythmic structures as well as commentary [BRUN06].

Representing Overlap
There are many ways to represent documents that contain overlapping structures. The most common methods in
XML are to use processing instructions or empty elements as milestones, marking the start (and end) of the minor
structures in the document.

For the purpose of discussion, I'll use the following short example that illustrates the three major classes of
overlap outlined above:

<book><?new-page no="1"?>
<title>Genesis</title>
...
<section>

<heading>The flood and the tower of Babel</heading>

Creole: Validating Overlapping Markup

3

...
<chapter no="7" />
...
<para>

... <verse no="23" /><s>God wiped out every living thing
that existed on earth, <index ref="i0037" mark="start" />
man and <index ref="i0038" mark="start" />beast <index
ref="i0037" mark="end" />, reptile <?new-page n="74"?>
and bird<index ref="i0038" mark="end" />; they were all
wiped out over the whole earth, and only Noah and his
company in the ark survived.</s>

</para>
<para>

<verse no="24" /><s>When the waters had increased over the
earth for a hundred and fifty days, <chapter no="8" />
<verse no="1" />God thought of Noah and all the wild
animals and the cattle with him in the ark, and he made a
wind pass over the earth, and the waters began to subside.
</s>...

</para>
...

</section>
...

</book>

This example contains:

• a section- and-paragraph-based hierarchy that is represented by normal elements
• a chapter-and-verse-based hierarchy that is represented by empty elements that indicate the start of new

chapters and verses
• a set of pages, whose start (and end) are indicated by <?new-page?> processing instructions
• a set of index references, which can overlap with each other, which are represented by empty elements with

mark="start" to indicate the start of a reference and mark="end" to indicate the end of a reference. The
empty elements are linked to each other by sharing the same value for their ref attribute.

This example might be displayed as shown in Figure 3.

Creole: Validating Overlapping Markup

4

Figure 3. Rendering of overlapping structures.

Using milestone processing instructions and elements isn't ideal. Structures that are indicated through milestones
are less tangible than those that are indicated through proper elements: they are less amenable to querying and
harder to process. For example, locating "the text referenced by index entry i0037", "the contents of page 74" or
"Chapter 7, Verse 24" is much harder than identifying "the second paragraph of the section entitled 'The flood and
the tower of Babel'".

In documents that contain multiple overlapping hierarchies, using milestones can give the erroneous impression
that one hierarchy is more important or meaningful than another. In this example, sections and paragraphs form the
primary document structure. But accessing biblical texts by chapter and verse is more common than via section,
paragraph and sentence (which changes based on the translation), so the following markup, where the <para> and
<s> elements are empty milestones, might make more sense:

<book><?new-page no="1"?>
<title>Genesis</title>
...
<section>

<heading>The flood and the tower of Babel</heading>
</section>
...
<chapter no="7">

...
<para />
... <verse no="23"><s />God wiped out every living thing that

existed on earth, <index ref="i0037" mark="start" />man
and <index ref="i0038" mark="start" /> beast<index
ref="i0037" mark="end" />, reptile <?new-page n="74"?>and
bird <index ref="i0038" mark="end" />; they were all

Creole: Validating Overlapping Markup

5

wiped out over the whole earth, and only Noah and his
company in the ark survived.</verse>

<para />
<verse no="24"><s />When the waters had increased over the
earth for a hundred and fifty days, </verse>

</chapter>
<chapter no="8">

<verse no="1">God thought of Noah and all the wild animals
and the cattle with him in the ark, and he made a wind pass
over the earth, and the waters began to subside.</verse>...
...

</chapter>
...

</book>

As we'll see in the next sections, there are also many non-XML syntaxes for representing documents that contain
overlap, such as TexMecs [HUIT06] and LMNL [TENN02].

Validating Overlap
So overlapping structures are common in real documents. Even using plain XML, we can represent them in a
number of ways, but how do we validate them?

Milestones are hard to validate with existing schema languages. It's possible to indicate where elements are
allowed, or even where processing instructions are permitted if you use Schematron, but any assertions about their
content are hard to state.

For example, in the Bible extract above, we want to say:

• a book contains a title followed by one or more sections, each of which has a heading and a number of
paragraphs, each of which contains a number of sentences

• a book also contains a title followed by one or more chapters, each of which contains a number of verses
• a book contains one or more pages
• page breaks cannot appear within the book title or a section heading
• every paragraph is made up of one or more verses
• a sentence or heading contains any number of index references, which can overlap with each other

When chapter and verse breaks are represented using milestones, we could use Relax NG to articulate these rules as
follows:

start = book
book = element book { title, section+ }
title = element title { text }
section = element section { heading, para+ }
heading = element heading { text & index* }
para = element para { (chapter?, verse), s+ }
s = element s { text & (verse*, chapter?, verse*)

& index* }
chapter = element chapter { attribute no { text } }
verse = element verse { attribute no { text } }
index = element index { attribute ref { text },

attribute mark
{ "start" | "end" } }

supplemented by some Schematron rules:

<sch:rule context="verse">
<sch:assert test="preceding::chapter">

Creole: Validating Overlapping Markup

6

Each verse milestone must come after a chapter milestone.
</sch:assert>

</sch:rule>
<sch:rule context="s | heading">

<sch:report test="index[@mark = 'start' and
not(@ref =

current()/index
[@mark = 'end']/@ref)]">

Every index start anchor must be matched by an end anchor in
the same sentence or heading.

</sch:report>
</sch:rule>
<sch:rule context="processing-instruction('new-page')">

<sch:report test="parent::heading or parent::title">
Pages cannot start within a section heading or the book
title.

</sch:report>
</sch:rule>

These rules don't allow us to make assertions in an intuitive way about "chapters" or "pages" because such structures
aren't easy to identify within the document. They also force us to constrain the markup language in unnatural ways,
such as insisting that the first <verse> milestone must be the first child of a <para>.

Concur
SGML supported overlap through the CONCUR directive. With CONCUR, a document can have several
DTDs associated with it, and each element within the document is associated with one or more of the DTDs. The
document is validated against each of the DTDs, but only those elements associated with a particular DTD are
visible during validation.

Our example using SGML's CONCUR is shown below.

<!DOCTYPE book.s SYSTEM "book.sections.dtd">
<!DOCTYPE book.c SYSTEM "book.chapters.dtd">
<!DOCTYPE book.p SYSTEM "book.pages.dtd">
<!DOCTYPE book.i1 SYSTEM "book.index.dtd">
<!DOCTYPE book.i2 SYSTEM "book.index.dtd">
<(book.s)book.s><(book.c)book.c><(book.p)book.p>
<(book.i1)book.i1><(book.i2)book.i2>

<(book.p)page no="1">
<(book.s)title>

<(book.c)title>Genesis</(book.c)title>
</(book.s)title>
...
<(book.s)section

heading="The flood and the tower of Babel">
...
<(book.c)chapter no="7">

...
<(book.s)para>...<(book.s)s><(book.i1)s><(book.i2)s>

<(book.c)verse no="23"> God wiped out every living thing
that existed on earth, <(book.i1)index ref="i0037"> man
and <(book.i2)index ref="i0038">beast</(book.i1)index>,
reptile</(book.p)page><(book.p)page no="74">and bird
</(book.i2)index>; they were all wiped out over the whole
earth, and only Noah and his company in the ark survived.
</(book.c)verse> </(book.i2)s></(book.i1)s></(book.s)s>

Creole: Validating Overlapping Markup

7

</(book.s)para>
<(book.s)para><(book.s)s><(book.c)verse no="24">When the
waters had increased over the earth for a hundred and fifty
days, </(book.c)verse>

</(book.c)chapter>
<(book.c)chapter no="8">

<(book.c)verse no="1">God thought of Noah and all the wild
animals and the cattle with him in the ark, and he made a
wind pass over the earth, and the waters began to subside.
</(book.c)verse></(book.s)s>...</(book.s)para>
...

</(book.c)chapter>
...
</(book.s)section>
...
</(book.p)page>

</(book.i2)book.i2></(book.i1)book.i1></(book.p)book.p>
</(book.s)book.s></(book.c)book.c>

Documents using CONCUR are treated as multiple separate documents for the purpose of validation. To validate
the document against a particular DTD, all tags that don't belong to that DTD are stripped out and the result
validated. The document as a whole is valid if it's valid against all the DTDs it defines. In this case, the five
documents are section-based:

<!DOCTYPE book.s SYSTEM "book.sections.dtd">
<book.s>

<title>Genesis</title>
...
<section heading="The flood and the tower of Babel">

...
<para>...<s>God wiped out every living thing that existed on
earth, man and beast, reptile and bird; they were all wiped
out over the whole earth, and only Noah and his company in
the ark survived.</s></para>
<para><s>When the waters had increased over the earth for a
hundred and fifty days, God thought of Noah and all the
wild animals and the cattle with him in the ark, and he
made a wind pass over the earth, and the waters began to
subside.</s>...</para>
...

</section>
...

</book.s>

chapter-based:

<!DOCTYPE book.c SYSTEM "book.chapters.dtd">
<book.c>

<title>Genesis</title>
...
<chapter no="7">

...
<verse no="23">God wiped out every living thing that existed
on earth, man and beast, reptile and bird; they were all
wiped out over the whole earth, and only Noah and his company
in the ark survived.</verse>

Creole: Validating Overlapping Markup

8

<verse no="24">When the waters had increased over the earth
for a hundred and fifty days, </verse>

</chapter>
<chapter no="8">

<verse no="1">God thought of Noah and all the wild animals
and the cattle with him in the ark, and he made a wind pass
over the earth, and the waters began to subside.</verse>
...

</chapter>
...

</book.c>

page-based:

<!DOCTYPE book.p SYSTEM "book.pages.dtd">
<book.p>

<page no="1">
Genesis
...
God wiped out every living thing that existed on earth, man
and beast, reptile

</page>
<page no="74">

and bird; they were all wiped out over the whole earth, and
only Noah and his company in the ark survived.

When the waters had increased over the earth for a hundred
and fifty days, God thought of Noah and all the wild animals
and the cattle with him in the ark, and he made a wind pass
over the earth, and the waters began to subside.
...

</page>
</book.p>

and there are two index-based documents, one for the first index term:

<!DOCTYPE book.i1 SYSTEM "book.index.dtd">
<book.i1>

Genesis
...
<s>God wiped out every living thing that existed on earth,
<index ref="i0037">man and beast</index>, reptile and bird;
they were all wiped out over the whole earth, and only Noah and
his company in the ark survived.</s>

When the waters had increased over the earth for a hundred and
fifty days, God thought of Noah and all the wild animals and
the cattle with him in the ark, and he made a wind pass over
the earth, and the waters began to subside.
...

</book.i1>

and one for the second index term:

<!DOCTYPE book.i2 SYSTEM "book.index.dtd">
<book.i2>

Creole: Validating Overlapping Markup

9

Genesis
...
<s>God wiped out every living thing that existed on earth, man
and <index ref="i0038">beast, reptile and bird</index>; they
were all wiped out over the whole earth, and only Noah and his
company in the ark survived.</s>

When the waters had increased over the earth for a hundred and
fifty days, God thought of Noah and all the wild animals and
the cattle with him in the ark, and he made a wind pass over
the earth, and the waters began to subside.
...

</book.i2>

There are several problems with the CONCUR approach:

• CONCUR requires extensive, and verbose, markup of the document. Not only does this add to the size of the
document, it also strongly binds the document closely to its DTDs.

• CONCUR does not allow co-constraints between hierarchies to be expressed, such as the fact that each
paragraph contains one or more verses.

• All the text within the document must be covered by all hierarchies in the document. In the example above, I
had to move the section heading to be an attribute so that the chapter-based hierarchy would validate.

• Elements that are common in several hierarchies must be repeated so that they appear in all the documents to be
validated. The <book> and <title> elements are examples in the above.

• CONCUR does not extend well to self-overlap, where a single element can overlap with itself, because this
would require an arbitrary number of DTDs to be associated with the document. In this example, because the
<index> elements overlapped each other, I had to have two sub-documents. The more self-overlap there is,
the more DTDs are required.

Rabbit/Duck Grammars
In [SPER06], Sperberg-McQueen proposed a solution similar to CONCUR, named rabbit/duck grammars. Like
CONCUR, rabbit/duck grammars split a document into several virtual documents, each of which can be validated
against a different grammar. But for the purpose of validation, rabbit/duck grammars classify elements into four
categories:

• Normal elements
• Milestones, whose start and end tags can be matched individually
• Transparent elements, whose start and end tags are ignored
• Opaque elements, whose start and end tags, and content, are ignored completely

CONCUR treats all elements as either normal elements or transparent elements. In rabbit/duck grammars,
milestones add the ability to do cross-grammar validation by limiting where the start and end tags of elements from
other grammars can appear, and opaque elements mean that subtrees can be ignored.

Rabbit/duck grammars start from a document in which all elements are marked up in the same way, such as
TexMecs [HUIT06]:

<book|<page no="1"|
<title|Genesis|title>
...
<section|

<heading|The flood and the tower of Babel|heading>
...
<chapter no="7"|

...

Creole: Validating Overlapping Markup

10

<para|...<s|<verse no="23"|God wiped out every living thing
that existed on earth, <index~1 ref="i0037"|man and
<index~2 ref="i0038"|beast|index~1>, reptile|page>
<page no="74"|and bird|index~2>; they were all wiped out
over the whole earth, and only Noah and his company in the
ark survived.|s>|verse>|para>
<para|<verse no="24"|<s|When the waters had increased over
the earth for a hundred and fifty days, |verse>|chapter>
<chapter no="8"|<verse no="1"|God thought of Noah and all
the wild animals and the cattle with him in the ark, and
he made a wind pass over the earth, and the waters began to
subside.|verse>|s>...|para>
...

|chapter>
...

|section>
...

|page>|book>

The grammar for the chapter-based view is:

<!-- Chapter grammar -->
<!GRAMMAR book [

<!ELEMENT book (title, chapter+)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT chapter (verse+)>
<!ATTLIST chapter

no NMTOKEN #REQUIRED>
<!ELEMENT verse (#PCDATA)>
<!ATTLIST verse

no NMTOKEN #REQUIRED>
<!ELEMENT heading IGNORE>

]>

Here, the <book>, <title>, <chapter> and <verse> elements are normal elements. There are no milestone
elements. The <page>, <section>, <para> and <index> elements are transparent (they're not mentioned in
the DTD so their tags are ignored), and the <heading> element is opaque (it and its content are ignored
completely). In XML, the document to be validated would look like:

<book>
<title>Genesis</title>
...
<chapter no="7">

...
<verse no="23">God wiped out every living thing that existed
on earth, man and beast, reptile and bird; they were all
wiped out over the whole earth, and only Noah and his company
in the ark survived.</verse>
<verse no="24">When the waters had increased over the earth
for a hundred and fifty days, </verse>

</chapter>
<chapter no="8">

<verse no="1">God thought of Noah and all the wild animals
and the cattle with him in the ark, and he made a wind pass
over the earth, and the waters began to subside.</verse>

Creole: Validating Overlapping Markup

11

...
</chapter>
...

</book>

A grammar for the section-based view of the biblical structure could be:

<!-- Section grammar -->
<!GRAMMAR book [

<!ELEMENT book (title, section+)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT section (heading, para+>
<!ELEMENT heading (#PCDATA)>
<!ELEMENT para (#stag(verse),

(s+ & #tag(verse)*),
#etag(verse))>

<!ELEMENT s (#PCDATA | #tag(verse))*>
]>

Under this view, the <book>, <title>, <section>, <heading>, <para> and <s> elements are normal
elements: they have element declarations. The <verse> tags are classed as milestones: start tags are matched by
#stag(verse), end tags by #etag(verse) and any tag matched by the particle #tag(verse). The
<chapter> and <index> elements are transparent, and thus their tags are ignored. In XML, the document to be
validated would look like the following (sID and eID attributes have been added to milestone elements to indicate
the correct pairings).

<book>
<title>Genesis<title>
...
<section>

<heading>The flood and the tower of Babel<heading>
...
<para>...<s><verse no="23" sID="c7v23" />God wiped out every
living thing that existed on earth, man and beast, reptile
and bird; they were all wiped out over the whole earth, and
only Noah and his company in the ark survived.</s><verse
eID="c7v23" />
</para>
<para><verse no="24" sID="c7v24" /><s>When the waters had
increased over the earth for a hundred and fifty days, <verse
eID="c7v24" /><verse no="1" sID="c8v1">God thought of Noah
and all the wild animals and the cattle with him in the ark,
and he made a wind pass over the earth, and the waters began
to subside.</s><verse eID="c8v1" />...</para>
...

</section>
...

</book>

Using milestones for the <verse> elements means we can constrain how the two hierarchies interact. The
declaration for the <para> element:

<!ELEMENT para (#stag(verse),
(s+ & #tag(verse)*),
#etag(verse))>

Creole: Validating Overlapping Markup

12

says that they must start with a start tag of a verse, then contain interleaved <s> elements and verse start or end tags,
and end with the end tag of a verse. Because we know (from the chapter-based hierarchy) that verses can't nest or
overlap each other, these constraints guarantee that each <para> contains a whole number of verses.

But the declaration for the <para> element also adds a constraint about the position of the verse tags: the first
thing in the <para> element must be the start tag for a <verse> element. The following paragraph wouldn't be
valid because the first verse start tag appears within the <s> element.

<para|<s|<verse no="24"|When the waters had increased over the
earth for a hundred and fifty days, |verse>|chapter><chapter
no="8"|<verse no="1"|God thought of Noah and all the wild animals
and the cattle with him in the ark, and he made a wind pass over
the earth, and the waters began to subside.|verse>|s>...|para>

A page-based grammar could similarly constrain the position of page breaks by viewing headings and titles as
normal elements:

<!-- Page grammar -->
<!GRAMMAR book [

<!ELEMENT book (page+)>
<!ELEMENT page (#PCDATA | title | heading)*>
<!ELEMENT title (#PCDATA)>
<!ELEMENT heading (#PCDATA)>

]>

to give:

<book>
<page no="1">

<title>Genesis<title>
...
<heading>The flood and the tower of Babel<heading>
...
God wiped out every living thing that existed on earth, man
and beast, reptile

</page>
<page no="74">

and bird; they were all wiped out over the whole earth, and
only Noah and his company in the ark survived.

When the waters had increased over the earth for a hundred
and fifty days, God thought of Noah and all the wild animals
and the cattle with him in the ark, and he made a wind pass
over the earth, and the waters began to subside.
...

</page>
</book>

Finally, to handle the self-overlapping index references, rabbit/duck grammars introduce a new kind of group called
an overlap group (#overlap()) and an overlap token (~name~) which can only appear within an overlap group
and matches an instance of an element that overlaps itself. Here, to constrain where index references can appear we
could use a grammar that treats paragraphs and headings as normal elements that contain overlap groups:

<!-- Index grammar -->
<!GRAMMAR book [

<!ELEMENT book (heading, s+)+>

Creole: Validating Overlapping Markup

13

<!ELEMENT heading (#overlap((#PCDATA | #tag(index))*,
~index~,
(#PCDATA | #tag(index))*)>

<!ELEMENT s (#overlap((#PCDATA | #tag(index))*,
~index~,
(#PCDATA | #tag(index))*)>

<!ELEMENT index (#PCDATA | #tag(index))*>
<!ATTLIST index

ref NMTOKEN #REQUIRED>
<!ELEMENT title IGNORE>

]>

To validate these structures, each portion of a document that matches an overlap group is read multiple times. Each
time, a different element matching the overlap token is interpreted as a normal element; all other instances of that
element are treated as milestones. For example, the sentence

<s|...God wiped out every living thing that existed on earth,
<index~1 ref="i0037"|man and <index~2 ref="i0038"|beast|index~1>,
reptile and bird|index~2>; they were all wiped out over the whole
earth, and only Noah and his company in the ark survived.|s>

contains two index references. The first view of the sentence would yield:

<s>...God wiped out every living thing that existed on earth,
<index ref="i0037">man and <index ref="i0038" sID="e1" />beast
</index>, reptile and bird<index eID="e1" />; they were all wiped
out over the whole earth, and only Noah and his company in the
ark survived.</s>

The second view would yield:

<s>...God wiped out every living thing that existed on earth,
<index ref="i0037" sID="e1" />man and <index ref="i0038">beast
<index eID="e1" />, reptile and bird</index>; they were all wiped
out over the whole earth, and only Noah and his company in the
ark survived.</s>

Rabbit/duck grammars have a lot going for them. They provide a much more flexible method of validating
overlapping markup than CONCUR, and they can handle self-overlap. However, it can be hard to predict the
impact of interacting grammars on the actual structure of a document, and the limits that tag-based particles place
on documents can seem quite arbitrary. In addition, the method of expressing self-overlap is quite verbose even in
simple cases.

XCONCUR
XCONCUR [HIL05, SCH06] uses a combination of a similar mechanism to CONCUR and a constraint-based
language similar to Schematron in order to validate multi-hierarchy documents.

As in CONCUR, each element in the document must be assigned to an "annotation layer", for which a
grammar is supplied. To be valid overall, the document must be valid on each annotation layer.

The constraint-based language is of most interest here, because it differs from the previous approaches.
XCONCUR provides three particles:

• start(layer, name) indicates the start tag of an element called name in the layer layer
• end(layer, name) indicates the end tag of an element called name in the layer layer
• element(layer, name) indicates the element called name in the layer layer

Creole: Validating Overlapping Markup

14

0077-30/index.xhtml

and six operators:

• tag1 << tag2 means that tag1 precedes tag2
• tag1 == tag2 means that tag1 and tag2 appear at the same position within the text of the document
• tag1][el2 means that tag1 is not within el2
• tag1 >> tag2 means that tag1 follows tag2
• tag1 [] el2 means that tag1 is within el2
• tag1 <= tag2 means that tag1 either appears before or at the same place as tag2 within the text of the

document

These operators are sufficient to express relationships between ranges. For example, to say that each paragraph must
start a new verse, you could use:

stag(book.s, para) == stag(book.c, verse)

although presumably this constraint would also mean that all verses must coincide with the start of a paragraph,
which is not desired.

XCONCUR usefully distinguishes the method of defining annotation layers from the method used to validate
them, but articulating the cross-layer constraints separately is awkward.

Creole
The validation technologies that we've looked at so far are based on the concept of separating a single document
into separate documents, each of which is validated against a separate DTD. The underlying assumption is that a
single document has been marked up separately by distinct languages and the results merged. This can be compared
to code-switching in natural language:

Code-switching is a term in linguistics referring to alternation between two or more languages,
dialects, or language registers in a single conversation, stretch of discourse, or utterance between people
who have more than one language in common. (Wikipedia)

The biggest problem with this approach is that it can be hard to get an overview about what the intersection of the
separate grammars actually means for a single document.

Creole takes a different tack. It views documents in which elements overlap as conforming to a unified markup
language in its own right that allows overlap. This is similar to a natural language creole:

A creole language, or simply a creole, is a well-defined and stable language that originated from a
non-trivial combination of two or more languages, typically with many distinctive features that are not
inherited from either parent. (Wikipedia)

Creole stands for Composable Regular Expressions for Overlapping Languages etc. It takes Relax NG as its basis,
rather than DTDs, which gives it more power and flexibility than CONCUR and rabbit/duck grammars. It's also
based on the LMNL (Layered Markup and Annotation Language) data model, which views elements as named and
annotated ranges of text within a character stream (see www.lmnlwiki.org for details).

In this section, we'll look at Creole's syntax and in the next section an algorithm that can be used to validate
documents with it. For simplicity, this summary will omit new patterns that match the LMNL-specific constructs
of annotations and atoms.

Everything that's allowed in Relax NG is allowed in Creole, and every Relax NG schema is a valid Creole
schema. (If you're unfamiliar with Relax NG, I recommend the tutorial at http://www.oasis-open.org/committees/
relax-ng/tutorial.html.)

Creole: Validating Overlapping Markup

15

http://www.lmnlwiki.org/
http://www.oasis-open.org/committees/relax-ng/tutorial.html
http://www.oasis-open.org/committees/relax-ng/tutorial.html

The first pattern that Creole adds to Relax NG is the <range> pattern. The <range> pattern is identical in
syntax to the <element> pattern, and matches a named range within a document, which can overlap other ranges.
For example:

<range name="page">
<attribute name="no" />
<text />

</range>

matches a range named page with an attribute called no. Attribute patterns in Creole are treated as a shorthand for
an <annotation> pattern, since LMNL has structured and annotatable annotations rather than attributes. The
pattern can be used to match annotations that have neither structure nor annotations.

Element patterns are still allowed within Creole, but they are treated as a syntactic shorthand for a
<partition> pattern wrapped around a <range> pattern. The new <partition> pattern says that this part of
the document can't be overlapped by anything else. We can define the title of the book as an element, with:

<element name="title"><text /></element>

which is shorthand for:

<partition>
<range name="title"><text /></range>

<partition>

and nothing will be able to overlap it.
In sequences (a <group> pattern), ranges behave like elements: the ranges must appear in that order and

cannot overlap. However, if you use <interleave> then ranges may overlap. For example,

<interleave>
<text />
<range name="strong"><text /></range>
<range name="em"><text /></range>

</interleave>

allows the and elements to overlap each other, or appear inside each other. To explain this, it
helps to imagine each range pattern expanded to a start tag, the content allowed in the range, and an end tag.
Although not legal Creole syntax, expanding the above pattern would give

<interleave>
<text />
<group>

<startTag name="strong" />
<text />
<endTag name="strong" />

</group>
<group>

<startTag name="em" />
<text />
<endTag name="em" />

</group>
</interleave>

Partitions act as a strongly bound group which cannot be interrupted once it is started. It's as if the ranges within a
partition aren't expanded as described above.

Creole: Validating Overlapping Markup

16

The third new pattern is <concur>. The <concur> pattern is like <group> and <interleave>, in that it
takes two or more sub-patterns. Both patterns must be matched, but while any content (text) must be matched in
both patterns, markup can be matched by either or both. Put another way, <concur> describes one or more
distinct grammars much as CONCUR does, but applies them to a subtree rather than the entire document.

To see <concur> in action, let's look at the content of the <para> range in the Biblical example, as defined
by Creole:

<range name="para">
<concur>

<oneOrMore>
<ref name="verse" />

</oneOrMore>
<oneOrMore>

<ref name="s" />
</oneOrMore>

</concur>
</range>

The <para> range can be described as containing one or more <verse> ranges. It can also be described as
containing one or more <s> ranges. These two content models run concurrently; all the textual content of the
<para> range must appear both within a <verse> and within a <s>.

It's worth noting that, unlike the equivalent rabbit/duck grammar, in which the first thing in the <para>
element had to be start tag of a <verse> element, this definition of the <para> range allows the tags for the
<verse> and <s> ranges to appear in any order.

The <book> element in our example has similar concurrent content. It can be described as having one or more
<page> ranges. It can also be described as having a <title> followed by (concurrently) one or more
<chapter> ranges and one or more <section> ranges. The pattern for the <book> element looks like:

<element name="book">
<concur>

<oneOrMore>
<ref name="page" />

</oneOrMore>
<group>

<ref name="title" />
<concur>

<oneOrMore>
<ref name="chapter" />

</oneOrMore>
<oneOrMore>

<ref name="section" />
</oneOrMore>

</concur>
</group>

</concur>
</element>

What about the <heading> element within the <section>? Its text isn't inside a <verse>, so would normally
be invalid. However, we can define the <heading> as a partition — it can't overlap anything else — and this
means that it's ignored by any concurrent patterns. The definition of <heading> is:

<element name="heading">
<ref name="indexedText" />

</element>

Creole: Validating Overlapping Markup

17

which expands to

<partition>
<range name="heading">

<ref name="indexedText" />
</range>

</partition>

The final patterns to introduce are the <concurOneOrMore> and <concurZeroOrMore> patterns, which
support self-overlap. These patterns are similar to <oneOrMore> and <zeroOrMore> except that rather than the
sub-pattern matching several times in sequence, the sub-pattern matches several times concurrently. In the Biblical
example, the <index> elements overlap with themselves. The pattern for the <s> range is:

<range name="s">
<concurOneOrMore>

<mixed>
<zeroOrMore>

<ref name="index" />
</zeroOrMore>

</mixed>
</concurOneOrMore>

</range>

The <s> range has mixed content. At its simplest, it can contain text with zero or more <index> ranges appearing
in sequence. But that same content model can appear multiple times concurrently, with <index> ranges
overlapping other <index> ranges.

A compact version of the complete Creole grammar for the Biblical example we've been looking at is

start = book
book = element book { page ~

(title, (chapter+ ~ section+)) }
page = range page { attribute no { text }, text }
title = element title { text }
chapter = range chapter { attribute no { text }, verse+ }
verse = range verse { attribute no { text }, text }
section = range section { heading, para+ }
heading = element heading { indexedText }
para = range para { verse+ ~ s+ }
s = range s { indexedText }
indexedText = concurOneOrMore { mixed { index* } }
index = range index { attribute ref { text }, text }

The ~ is used to create <concur> pattern, and concurOneOrMore{...} creates a <concurOneOrMore>
pattern. The full syntax version is in the Appendix.

Validating with Creole
Creole can be implemented using a similar algorithm as that used for Relax NG [CLA02], based on Brzozowski
derivatives. Brzozowski derivatives have also been used successfully with XML Schema validation [SPER05] and
rabbit/duck grammars [SPER06].

Algorithms based on Brzozowski derivatives start with a pattern and a sequence of tokens that might or might
not match the pattern. Using string regular expressions, say we had the pattern

a(b|c)d+

Creole: Validating Overlapping Markup

18

and the tokens (characters)

acd

We look at the first token and construct a new pattern, based on the old one, that we can use to test the rest of the
tokens. This new pattern is known as the derivative. In this case, the derivative from the first character, 'a', is the
regular expression

(b|c)d+

Then we take the second token and create a new derivative from that. In this example, the new derivative after the
character 'c' is

d+

We keep doing this until we get to the end of the sequence of tokens. If the final regular expression is empty or is
nullable (which means it can match an empty sequence of tokens), then the string matches the regular expression. If
not, it doesn't. For example, if we started with the string

bd

then the first derivative would be a regular expression that cannot match any string.
This algorithm for Creole works in largely the same way as that for string regular expressions: the tokens are

tags and text events rather than characters, and the patterns are different, but the principle of constructing
derivatives still applies. It builds on the algorithm developed by James Clark for Relax NG [CLA02].

In this section, we'll go through the basic algorithm for Creole, but omit those parts that deal with annotations
(attributes), atoms and datatypes. The full algorithm is available at http://www.lmnlwiki.org/index.php/
Algorithm_for_Creole_Validation. I'll use the Haskell-based syntax used for the Relax NG algorithm as it's slightly
more approachable than mathematical notation.

Basics
We need basic datatypes for URIs, local names and IDs:

type Uri = String
type LocalName = String
type Id = String

Qualified names are represented by the QName datatype, which consists of a URI and a local name:

data QName = QName Uri LocalName

We need to define the different kinds of name classes that are allowed (these are the same as those allowed in Relax
NG):

data NameClass = AnyName
| AnyNameExcept NameClass
| Name Uri LocalName
| NsName Uri
| NsNameExcept Uri NameClass
| NameClassChoice NameClass NameClass

We also need to define the different kinds of patterns that are supported by Creole. This is an different set from
those allowed in Relax NG: ignoring those to do with annotations/attributes, atoms and datatypes, Concur,
Partition, ConcurOneOrMore, Range, EndRange and All are new, and Element is no longer present.

Creole: Validating Overlapping Markup

19

data Pattern = Empty
| NotAllowed
| Text
| Choice Pattern Pattern
| Interleave Pattern Pattern
| Group Pattern Pattern
| Concur Pattern Pattern
| Partition Pattern
| OneOrMore Pattern
| ConcurOneOrMore Pattern
| Range NameClass Pattern
| EndRange QName Id
| After Pattern Pattern
| All Pattern Pattern

The patterns EndRange, After and All are constructs that are used in the algorithm but don't correspond to
patterns you can write in a Creole grammar.

• The EndRange pattern matches the end tag of a range with the given qualified name and ID. The ID is used
for matching self-overlapping ranges.

• The After pattern is used when creating partitions; in the algorithm for Relax NG it guarantees that
interleaved elements can't appear within each other. It's a bit like Group, in that the first sub-pattern of After
must be completed before the second can be matched, but it's handled differently when patterns are composed,
so that the After pattern "bubbles up" through groups.

• The All pattern means that both sub-patterns must be matched by the events1.

For validating against Creole, a document is considered to be a sequence of events; the only ones we're going to
look at here are start tag events, end tag events and text events. Note that, unlike in normal XML, start and end tags
can have IDs, which allows us to match the tags of self-overlapping ranges.

data Event = StartTagEvent QName Id
| EndTagEvent QName Id
| TextEvent String Context

Utilities
The following utility functions are used in the algorithm.

The most important utility function is nullable, which tests whether a given pattern can match an empty
sequence of events. Nullable is defined as follows for the various kinds of patterns:

nullable:: Pattern -> Bool
nullable Empty = True
nullable NotAllowed = False
nullable Text = True
nullable (Choice p1 p2) = nullable p1 || nullable p2
nullable (Interleave p1 p2) = nullable p1 && nullable p2
nullable (Group p1 p2) = nullable p1 && nullable p2
nullable (Concur p1 p2) = nullable p1 && nullable p2
nullable (Partition p) = nullable p
nullable (OneOrMore p) = nullable p
nullable (ConcurOneOrMore p) = nullable p
nullable (Range _ _) = False
nullable (EndRange _ _) = False
nullable (After _ _) = False
nullable (All p1 p2) = nullable p1 && nullable p2

Creole: Validating Overlapping Markup

20

The second utility function is allowsText, which returns true if the pattern can match text. This is important
because whitespace-only text events are ignored if text isn't allowed by a pattern.

allowsText:: Pattern -> Bool
allowsText (Choice p1 p2) = allowsText p1 || allowsText p2
allowsText (Group p1 p2) =

if nullable p1 then (allowsText p1 || allowsText p2)
else allowsText p1

allowsText (Interleave p1 p2) =
allowsText p1 || allowsText p2

allowsText (Concur p1 p2) = allowsText p1 && allowsText p2
allowsText (Partition p) = allowsText p
allowsText (OneOrMore p) = allowsText p
allowsText (ConcurOneOrMore p) = allowsText p
allowsText (After p1 p2) =

if nullable p1 then (allowsText p1 || allowsText p2)
else allowsText p1

allowsText (All p1 p2) = allowsText p1 && allowsText p2
allowsText Text = True
allowsText _ = False

Finally, like Relax NG, Creole needs a method of testing whether a given qualified name matches a given name
class:

contains :: NameClass -> QName -> Bool
contains AnyName _ = True
contains (AnyNameExcept nc) n = not (contains nc n)
contains (NsName ns1) (QName ns2 _) = (ns1 == ns2)
contains (NsNameExcept ns1 nc) (QName ns2 ln) =

ns1 == ns2 && not (contains nc (QName ns2 ln))
contains (Name ns1 ln1) (QName ns2 ln2) =

(ns1 == ns2) && (ln1 == ln2)
contains (NameClassChoice nc1 nc2) n =

(contains nc1 n) || (contains nc2 n)

Constructors
When we create a derivative, we often need to create a new pattern. These constructors take into account special
handling of NotAllowed, Empty and After patterns.

choice :: Pattern -> Pattern -> Pattern
choice p NotAllowed = p
choice NotAllowed p = p
choice Empty Empty = Empty
choice p1 p2 = Choice p1 p2
group :: Pattern -> Pattern -> Pattern
group p NotAllowed = NotAllowed
group NotAllowed p = NotAllowed
group p Empty = p
group Empty p = p
group (After p1 p2) p3 = after p1 (group p2 p3)
group p1 (After p2 p3) = after p2 (group p1 p3)
group p1 p2 = Group p1 p2
interleave :: Pattern -> Pattern -> Pattern
interleave p NotAllowed = NotAllowed
interleave NotAllowed p = NotAllowed

Creole: Validating Overlapping Markup

21

interleave p Empty = p
interleave Empty p = p
interleave (After p1 p2) p3 = after p1 (interleave p2 p3)
interleave p1 (After p2 p3) = after p2 (interleave p1 p3)
interleave p1 p2 = Interleave p1 p2
concur :: Pattern -> Pattern -> Pattern
concur p NotAllowed = NotAllowed
concur NotAllowed p = NotAllowed
concur p Text = p
concur Text p = p
concur (After p1 p2) (After p3 p4) =

after (all p1 p3) (concur p2 p4)
concur (After p1 p2) p3 = after p1 (concur p2 p3)
concur p1 (After p2 p3) = after p2 (concur p1 p3)
concur p1 p2 = Concur p1 p2
partition :: Pattern -> Pattern
partition NotAllowed = NotAllowed
partition Empty = Empty
partition p = Partition p
oneOrMore :: Pattern -> Pattern
oneOrMore NotAllowed = NotAllowed
oneOrMore Empty = Empty
oneOrMore p = OneOrMore p
concurOneOrMore :: Pattern -> Pattern
concurOneOrMore NotAllowed = NotAllowed
concurOneOrMore Empty = Empty
concurOneOrMore p = ConcurOneOrMore p
after :: Pattern -> Pattern -> Pattern
after p NotAllowed = NotAllowed
after NotAllowed p = NotAllowed
after Empty p = p
after (After p1 p2) p3 = after p1 (after p2 p3)
after p1 p2 = After p1 p2
all :: Pattern -> Pattern -> Pattern
all p NotAllowed = NotAllowed
all NotAllowed p = NotAllowed
all p Empty = if nullable p then Empty else NotAllowed
all Empty p = if nullable p then Empty else NotAllowed
all (After p1 p2) (After p3 p4) =

after (all p1 p3) (all p2 p4)
all p1 p2 = All p1 p2

Derivatives
Finally, we can look at the calculation of derivatives. A document is a sequence of events. The derivative for a
sequence of events against a pattern is the derivative of the remaining events against the derivative of the first event.

eventsDeriv :: Pattern -> [Event] -> Pattern
eventsDeriv p [] = p
eventsDeriv p (h:t) = eventsDeriv (eventDeriv p h) t

The derivative for an event depends on the kind of event, and we use different functions for each kind.
Whitespace-only text nodes can be ignored if the pattern doesn't allow text.

eventDeriv :: Pattern -> Event -> Pattern
eventDeriv p (TextEvent s cx) =

Creole: Validating Overlapping Markup

22

if (whitespace s && not allowsText p)
then p
else (textDeriv cx p s)

eventDeriv p (StartTagEvent qn id) = startTagDeriv p qn id
eventDeriv p (EndTagEvent qn id) = endTagDeriv p qn id

Text Derivatives
textDeriv computes the derivative of a pattern with respect to a text event.

textDeriv :: Context -> Pattern -> String -> Pattern

For Choice, Group, Interleave and the other standard Relax NG patterns, the derivative is just the same as in
Relax NG:

textDeriv cx (Choice p1 p2) s =
choice (textDeriv cx p1 s) (textDeriv cx p2 s)

textDeriv cx (Interleave p1 p2) s =
choice (interleave (textDeriv cx p1 s) p2)

(interleave p1 (textDeriv cx p2 s))
textDeriv cx (Group p1 p2) s =

let p = group (textDeriv cx p1 s) p2
in if nullable p1 then choice p (textDeriv cx p2 s)

else p
textDeriv cx (After p1 p2) s =

after (textDeriv cx p1 s) p2
textDeriv cx (OneOrMore p) s =

group (textDeriv cx p s) (choice (OneOrMore p) Empty)
textDeriv cx Text _ = Text

For Concur, text is only allowed if it is allowed by both of the sub-patterns: we create a new Concur whose
sub-patterns are the derivatives of the original sub-patterns.

textDeriv cx (Concur p1 p2) s =
concur (textDeriv cx p1 s)

(textDeriv cx p2 s)

For ConcurOneOrMore, we partially expand the ConcurOneOrMore into a Concur. This mirrors the
derivative for OneOrMore, except that a new Concur pattern is constructed rather than a Group, and the second
sub-pattern is a choice between a ConcurOneOrMore and Text.

textDeriv cx (ConcurOneOrMore p) s =
concur (textDeriv cx p s)

(choice (ConcurOneOrMore p) Text)

For Partition, we create an After pattern that contains the derivative.

textDeriv cx (Partition p) s =
after (textDeriv cx p s) Empty

No other patterns can match a text event; the default is specified as

textDeriv _ _ _ = NotAllowed

Creole: Validating Overlapping Markup

23

Start-tag Derivatives
Start tags are handled in a very generic way by all the patterns, except the Range pattern, whose derivative is a
group of the content pattern for the range followed by an EndRange pattern for the range. Note that the
EndRange pattern is created with the same qualified name and ID as the matched range.

startTagDeriv :: Pattern -> QName -> Id -> Pattern
startTagDeriv (Range nc p) qn id =

if contains nc qn then group p (EndRange qn id)
else NotAllowed

startTagDeriv (Choice p1 p2) qn id =
choice (startTagDeriv p1 qn id)

(startTagDeriv p2 qn id)
startTagDeriv (Group p1 p2) qn id =

let d = group (startTagDeriv p1 qn id) p2
in if nullable p1 then choice d (startTagDeriv p2 qn id)

else d
startTagDeriv (Interleave p1 p2) qn id =

choice (interleave (startTagDeriv p1 qn id) p2)
(interleave p1 (startTagDeriv p2 qn id))

startTagDeriv (Concur p1 p2) qn id =
let d1 = startTagDeriv p1 qn id

d2 = startTagDeriv p2 qn id
in choice (choice (concur d1 p2) (concur p1 d2))

(concur d1 d2)
startTagDeriv (Partition p) qn id =

after (startTagDeriv p qn id) Empty
startTagDeriv (OneOrMore p) qn id =

group (startTagDeriv p qn id)
(choice (OneOrMore p) Empty)

startTagDeriv (ConcurOneOrMore p) qn id =
concur (startTagDeriv p qn id)

(choice (ConcurOneOrMore p) anyContent)
startTagDeriv (After p1 p2) qn id =

after (startTagDeriv p1 qn id) p2
startTagDeriv _ _ _ = NotAllowed

End Tags
End tags are matched by EndRange patterns. An id is used to support self-overlap: when an EndTagEvent
matches an EndRange pattern, the names have to match and so do the ids.

endTagDeriv :: Pattern -> QName -> Id -> Pattern
endTagDeriv (EndRange (QName ns1 ln1) id1)

(QName ns2 ln2) id2 =
if id1 == id2 ||

(id1 == '' && id2 == '' && ns1 == ns2 && ln1 == ln2)
then Empty
else NotAllowed

endTagDeriv (Choice p1 p2) qn id =
choice (endTagDeriv p1 qn id)

(endTagDeriv p2 qn id)
endTagDeriv (Group p1 p2) qn id =

let p = group (endTagDeriv p1 qn id) p2
if nullable p1 then choice p (endTagDeriv p2 qn id)

else p
endTagDeriv (Interleave p1 p2) qn id =

Creole: Validating Overlapping Markup

24

choice (interleave (endTagDeriv p1 qn id) p2)
(interleave p1 (endTagDeriv p2 qn id))

endTagDeriv (Concur p1 p2) qn id =
let d1 = endTagDeriv p1 qn id

d2 = endTagDeriv p2 qn id
in choice (choice (concur d1 p2) (concur p1 d2))

(concur d1 d2)
endTagDeriv (Partition p) qn id =

after (endTagDeriv p qn id) Empty
endTagDeriv (OneOrMore p) qn id =

group (endTagDeriv p qn id)
(choice (OneOrMore p) Empty)

endTagDeriv (ConcurOneOrMore p) qn id =
concur (endTagDeriv p qn id)

(choice (ConcurOneOrMore p) anyContent)
endTagDeriv (After p1 p2) qn id =

after (endTagDeriv p1 qn id) p2
endTagDeriv _ _ _ = NotAllowed

Implementation
Implementations of this algorithm can be optimized in the same way as Relax NG implementations:

• storing the result of the utility functions nullable and allowsText
• interning patterns to make it easy to test if two patterns are the same
• eliminating redundant choices
• using memoization to record the result of derivatives so they don't have to be recalculated

These techniques have been used in a proof-of-concept XSLT 2.0 implementation of Creole.

Conclusion
We've started to recognise XML's limitations in the representation of data, and the role of alternatives such as JSON
(www.json.org). In the same way, we should be exploring the real requirements of documents, which include
overlapping structures.

In fact, there's been a persistent, but low-level, thread of research into overlapping markup from the earliest days
of SGML, and the limitations of milestones and CONCUR have been well-known for many years. Various
methods of representing and querying overlapping markup have been proposed (see [DER04] for an overview),
but, as we've seen, none of the methods of validating overlap have been entirely satisfactory.

In [SPER06], Sperberg-McQueen offered some goals for methods of validating overlapping structures, before
acknowledging that rabbit/duck grammars don't meet them all:

• The method should be powerful enough to do useful work.
• It need not, however, be universal or Turing-complete. In the interests of being able to reason about the

mechanism, Turing completeness should be avoided if possible.
• It should provide a clear comprehensible method of expressing constraints on overlapping structures. This is

not easy to judge at first exposure to any formalism; the ease with which an idea is first grasped is not the same
as the clarity given by that idea when it is understood.

• It should be be built around simple core ideas; the algorithms involved should be simple; the notation should be
simple. Again, this is not easy to judge without more experience.

• Ideally, it should be possible to validate both data streams and graph data structures representing the overlapping
structures of interest. DTDs and most XML schema languages have this property: they can be used to check
both an XML document in serialized form and a tree derived from such an XML document.

Creole: Validating Overlapping Markup

25

http://www.json.org/

Creole meets almost all these goals. It is powerful enough to validate documents that involve many types of overlap,
such as the Biblical example that we've looked at in this paper, but it's not Turing complete. It provides a clear,
comprehensible method of expressing constraints. The core idea, algorithm and notation are as simple as those for
Relax NG, and compare well to the CONCUR-based methods that we've looked at.

Indeed, Creole's patterns can even be useful in schemas for plain XML. Mixed content models can be expressed
using patterns like:

inline = mixed { italic* & bold* & u* }
italic = range italic { text }
bold = range bold { text }
u = range u { text }

which allow each element to contain any of the others but not themselves (e.g. <italic> can contain <bold>
and <u> but not <italic>), a constraint that can't be expressed using the more usual technique:

inline = mixed { (italic | bold | u)* }
italic = element italic { inline }
bold = element bold { inline }
u = element u { inline }

The Brzozowski-derivative-based algorithm for validating documents with Creole requires them to be represented
as a sequence of events, which enables streaming implementations. Although designed to be used with LMNL,
Creole is data-model agnostic, and can be used with documents represented using any of the techniques we've
looked at — milestone elements, processing instructions, TexMecs, or any other syntax — if that syntax can be
mapped onto start tags, end tags and text. However, like rabbit/duck grammars, Creole can't handle some of the
more esoteric structures found in the overlapping markup literature, such as discontinuous and virtual elements
[HUIT06].

Creole's XSLT 2.0 implementation has proved that the algorithm works, but it is too slow, because of the
constraints of the language, to be a real-world validator. An implementation in a mainstream language is the next
step.

It would be interesting to see how Creole could be applied to querying documents, in particular for extracting
well-formed hierarchies on demand. But even as just a schema language, Creole stands alone in its approach, and
approachability, for validating overlapping markup.

Bibliography
[BRUN06] E. Bruno & E. Murisasco. 2006. Describing and querying hierarchical XML structures defined over

the same textual data. In Proceedings of the 2006 ACM symposium on Document engineering, Amsterdam, October
2006. [WWW] http://portal.acm.org/citation.cfm?id=1166199

[CLA02] J. Clark. 2002. An algorithm for RELAX NG validation. [WWW] http://www.thaiopensource.com/
relaxng/derivative.html

[DER04] S. DeRose. 2004. Markup Overlap: A Review and a Horse. In Proceedings of Extreme Markup Languages
2004, Montreal, August 2004. [WWW] http://www.idealliance.org/papers/extreme/proceedings/html/2004/
DeRose01/EML2004DeRose01.html

[DUR02] P. Durusau & M.B. O'Donnell. 2002. Coming Down from the Trees: Next step in the evolution of
markup? In Proceedings of Extreme Markup Languages 2002, Montreal, August 2002. [WWW]
http://www.idealliance.org/papers/extreme/proceedings/html/2002/Durusau01/EML2002Durusau01.html

[HIL05] M. Hilbert, O. Schonefeld, & A. Witt. 2005. Making Concur Work. In Proceedings of Extreme Markup
Languages 2005, Montreal, August 2005. [WWW] http://www.idealliance.org/papers/extreme/Proceedings/
html/2005/Witt01/EML2005Witt01.xml

[HUIT06] C. Huitfeldt & C.M. Sperberg-McQueen. 2006. Representation and processing of Goddag structures:
implementation strategies and progress report. In Proceedings of Extreme Markup Languages 2006, Montreal,

Creole: Validating Overlapping Markup

26

August 2006. [WWW] http://www.idealliance.org/papers/extreme/proceedings/html/2006/Huitfeldt01/
EML2006Huitfeldt01.html

[SCH06] O. Schonefeld & A. Witt. 2006. Towards Validation of Concurrent Markup. In Proceedings of Extreme
Markup Languages 2006, Montreal, August 2006. [WWW] http://www.idealliance.org/papers/extreme/
Proceedings/html/2006/Schonefeld01/EML2006Schonefeld01.html

[SPER05] C.M. Sperberg-McQueen. 2005. Applications of Brzozowski derivatives to XML Schema processing. In
Proceedings of Extreme Markup Languages 2005, Montreal, August 2005. [WWW] http://www.idealliance.org/
papers/extreme/proceedings/html/2005/SperbergMcQueen01/EML2005SperbergMcQueen01.html

[SPER06] C.M. Sperberg-McQueen. 2006. Rabbit/duck grammars: a validation method for overlapping
structures. In Proceedings of Extreme Markup Languages 2006, Montreal, August 2006. [WWW]
http://www.idealliance.org/papers/extreme/proceedings/html/2006/SperbergMcQueen01/
EML2006SperbergMcQueen01.html

[TENN02] J. Tennison & W. Piez. 2002. The Layered Markup and Annotation Language (LMNL). In Proceedings
of Extreme Markup Languages 2002, Montreal, August 2002. [WWW] http://www.idealliance.org/papers/
extreme/proceedings/html/2002/Tennison02/EML2002Tennison02.html

Appendix: Creole Grammar for Biblical Example
<grammar xmlns="http://lmnl.net/ns/creole">
<start>

<ref name="book" />
</start>

<define name="book">
<element name="book">

<concur>
<oneOrMore>

<ref name="page" />
</oneOrMore>
<group>

<ref name="title" />
<concur>

<oneOrMore>
<ref name="chapter" />

</oneOrMore>
<oneOrMore>

<ref name="section" />
</oneOrMore>

</concur>
</group>

</concur>
</element>

</define>

<define name="page">
<range name="page">

<attribute name="no" />
<text />

</range>
</define>

<define name="title">
<element name="title"><text /></element>

Creole: Validating Overlapping Markup

27

</define>

<define name="chapter">
<range name="chapter">

<attribute name="no" />
<oneOrMore>

<ref name="verse" />
</oneOrMore>

</range>
</define>

<define name="verse">
<range name="verse">

<attribute name="no" />
<text />

</range>
</define>

<define name="section">
<range name="section">

<ref name="heading" />
<oneOrMore>

<ref name="para" />
</oneOrMore>

</range>
</define>

<define name="heading">
<element name="heading">

<ref name="indexedText" />
</element>

</define>

<define name="indexedText">
<concurOneOrMore>

<mixed>
<zeroOrMore>

<ref name="index" />
</zeroOrMore>

</mixed>
</concurOneOrMore>

</define>

<define name="para">
<range name="para">

<concur>
<oneOrMore>

<ref name="verse" />
</oneOrMore>
<oneOrMore>

<ref name="s" />
</oneOrMore>

</concur>
</range>

</define>

Creole: Validating Overlapping Markup

28

<define name="s">
<range name="s">

<ref name="indexedText" />
</range>

</define>

<define name="index">
<range name="index">

<attribute name="ref" />
<text />

</range>
</define>

</grammar>

Creole: Validating Overlapping Markup

29

	Creole: Validating Overlapping Markup
	Abstract
	Introduction
	Representing Overlap
	Validating Overlap
	Concur
	Rabbit/Duck Grammars
	XCONCUR

	Creole
	Validating with Creole
	Basics
	Utilities
	Constructors
	Derivatives
	Text Derivatives
	Start-tag Derivatives
	End Tags

	Implementation

	Conclusion
	Bibliography
	Appendix: Creole Grammar for Biblical Example

