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Abstract

Researchers often encounter ordinal measures that they wish to examine as dependent variables in their

research—variables where the categories are ordered (running from high to low or low to high), but the

distance between the categories is unknown. For example, respondents might be asked if they strongly

disagree, disagree, agree, or strongly agree with a statement. Or, rather than give an exact value for their

years of education, respondents might be asked whether they had no education, some grade school, grade

school graduate, some high school, and so on. While it might be tempting to treat ordinal dependent variables

as though they were continuous and use techniques like ordinary least squares regression, this can result

in misleading estimates of independent variable effects and incorrect tests of statistical significance. Ordinal

regression models are therefore preferred under these circumstances—but there are many ordinal models to

choose from. This entry begins with a detailed discussion of perhaps the most popular choice, the ordered

logit model (also called the proportional odds model). The discussion will cover when the model might be

appropriate, the major assumptions of the model (and how they can be violated), and how to interpret model

results. However, in many cases, other ordinal models and methods will be more powerful or appropriate.

This entry therefore also discusses the ordered probit model, the generalized ordered logit model, interval

regression, scoring methods, heterogeneous choice/location scale models, stereotype models, stage models,

and the rank-ordered logit model—as well as briefly explains when and why each might be preferred.

Introduction

Researchers often estimate models where a continuous dependent variable, Y, is regressed on an

independent variable, X. But suppose the observed Y is not continuous. For example, Income might be

coded in categories such as <$1,000 = 1, $1,001–$10,000 = 2, $10,001–$30,000 = 3, $30,001–$60,000 = 4,

$60,001, or higher = 5. Respondents may also be asked, Do you approve or disapprove of the president’s

health care plan? The options being 1 = strongly disapprove, 2 = disapprove, 3 = approve, 4 = strongly

approve. Presumably, values of approval are not limited to four possible values. For example, respondents

could express their approval on a 100-point scale if it were to be constructed. However, when the possible

responses for approval have been condensed into four choices, the respondents must decide which of the

few available options best reflects their feelings.

For such variables, which are also known as limited dependent variables (Long, 1997), we know the

categories are ordered (running from high to low or low to high), but the distance between the categories is

unknown (Long & Freese, 2014). That is, unlike continuous variables, the distance between values 1 and 2

need not be the same as the distance between values 2 and 3.

The choice of an appropriate statistical technique is heavily affected by the measurement of the dependent

variable. When the dependent variable is continuous (e.g., income, or age), ordinary least squares (OLS)
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regression is often appropriate. Another instance in which the choice of statistical technique is more clear

occurs when the dependent variable is binary (e.g., yes/no, employed/unemployed). In this type of model, the

assumptions of OLS regression are violated, and methods like logistic or probit regression are often preferred.

When the dependent variable is ordinal however, the choice of statistical strategies may not be so clear. As

Scott Menard (2002) notes, some researchers will treat the variable as continuous and use OLS regression.

This may be fine if the variable has several categories but can be problematic if the variable has few

categories and/or if the spacing between categories is clearly not consistent. As Richard D. McKelvey and

William Zavoina (1975; see also Winship & Mare, 1984) point out, when OLS regression is used with ordinal

dependent variables, parameter estimates can be biased and misleading and tests of statistical significance

can be inaccurate. Others will use techniques like multinomial logistic regression (MLOGIT) which totally

ignore that the categories are ordered. Such techniques tend to be less parsimonious and harder to interpret

because they ignore the useful information that might be contained in the ordering of the categories.

Ordinal regression models are therefore often preferred. They avoid the problems of treating ordinal variables

as though they are continuous while at the same time still taking advantage of the knowledge that the

categories are ordered.

There is more than one ordinal regression model. This entry first focuses on one of the most popular models,

commonly called by such names as the ordered logit model (OLOGIT), the proportional odds model, the

cumulative logit model, the parallel lines model, or the parallel regressions model. The discussion will cover

when the model might be appropriate (and when it might not be), the major assumptions of the model, and

how to interpret model results.

This entry then discusses a few of the most popular alternatives: the ordered probit model, the generalized

OLOGIT (GOLOGIT), and interval regression. These models will sometimes be preferable to the ordered logit.

Still other less common but potentially useful alternatives—scoring methods, heterogeneous choice/location

scale models, stereotype models, stage models, and the rank-ordered logit—are also briefly mentioned.

While there will be some key equations in this entry, overall the approach will be relatively nonmathematical

and intuitive (for a more technical presentation, see Long, 1997; Long & Freese, 2014; Powers & Xie, 2008;

or Hardin & Hilbe, 2012).

The OLOGIT or Proportional Odds Model

Model Basics

Ordinal regression techniques, in particular the OLOGIT, can be motivated in various ways. One approach is

to say that there is an observed ordinal variable, Y. Y, in turn, is a function of another continuous, unmeasured

latent variable Y*, whose values determine what the observed ordinal variable Y equals. J. Scott Long and

Jeremy Freese (2014) write the model as
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Note that there are no intercept terms in the model. Instead, the continuous latent variable Y* has various

threshold points, which are represented using the Greek letter kappa (κ). Our value on the observed variable

Y depends on whether or not we have crossed a particular threshold. For example, when there are three

possible responses for the observed variable Y,

Put another way, we can think of Y as being a collapsed version of Y*, for example, Y* can take on an infinite

range of values which might then be collapsed into three categories of Y.

As Long (1997) points out, we can also motivate the OLOGIT by thinking of it as a nonlinear probability model,

that is, we predict the probability of the observed Y being a 1, a 2, and so on based on the values of the

observed X variables. We do not have to rely on the notion of an underlying Y*, and some prefer not to. The

statistical procedures are the same either way.

With observed variables, the metric has to be set in some way, for example, we can measure income in

dollars or in thousands of dollars. This is just as true with unobserved variables like Y*. Typically, this is done

by assuming that the error term has a standard logistic distribution and hence has a residual variance of π2/3

(about 3.29). This choice may seem peculiar, and there are other ways to set the metric of the latent variable,

but this approach tends to work well in practice and has nice mathematical properties that make it easy to

compute other quantities of interest.

The K βs and the M-1 κs are parameters that need to be estimated. Once we have done so, using the

corresponding sample estimates for each case we compute

Z is our best estimate of the underlying Y*, given the X values that were observed. It is similar to the y-hat
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that can be estimated using OLS regression. Because Y* also has an error term, this estimate may be too

high or too low for any particular case.

Because the error term has a standard logistic distribution, we can use the estimated M − 1 cutoff terms to

estimate the probability that the observed Y will take on a particular value. For the OLOGIT, the formulas are

In the case of M = 3, these equations simplify to

As these formulas make clear, using the estimated value of the underlying latent variable and the assumed

logistic distribution of the disturbance term, the OLOGIT can be used to estimate the probability that the

unobserved variable Y* falls within the various threshold limits.

Interpreting Results

Here, two empirical examples are presented to illustrate the key features of the OLOGIT. The first uses

a very small data set, only 25 cases, making it possible to examine the interpretation of the OLOGIT for

individual cases. The second data set is much larger, over 2,000 cases, and will show how more complicated

hypotheses and model assumptions can be tested. All analyses were done with Stata 16, but several other

statistical packages could have been used as well.

On January 28, 1986, the space shuttle Challenger exploded only 73 s after launch, killing all seven crew
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members. There was intense public interest in the flight because the crew included Christa McAuliffe, who

had been chosen from out of more than 11,000 applicants to become the first teacher in space. In Statistics

With Stata (Updated for Version 7), Lawrence C. Hamilton (2001) presents a fascinating example that shows

that the disaster might have been averted had NASA officials heeded the warning signs. His analysis is

replicated and extended here. Data covers the first 25 flights of the U.S. space shuttle. Table 1 lists the

variables that were measured for each flight.

Table 1. Shuttle data variables.

DISTRESS

The number of “thermal distress incidents” in which hot gas damaged the joint seals of a flight’s booster

rockets. Damage to the joint seals helped lead to the Challenger disaster. This is the dependent variable and

can be thought of as the observed indicator of the underlying riskiness of the flight. It is coded 1 = None, 2 = 1

or 2, and 3 = 3 or more.

TEMP

The calculated joint temperature at launch time. Temperature depends largely on weather. Colder

temperatures cause the rubber O-rings sealing the booster rocket joints to become less flexible and hence

more likely to have problems.

DATE

Date measured in days elapsed since January 1, 1960 (an arbitrary starting point). The rationale for this

variable is that undesirable changes in the shuttle program, and aging hardware may have caused launches to

become more risky across time.

Table 2 contains excerpts from the data. For each selected flight the observed variable values are given,

as well at the estimates of the underlying latent variable and the predicted probability that the flight would

experience three or more distress incidents.

Table 2. Shuttle data, selected flights.

flight DISTRESS TEMP DATE Z (Computed) P (Y = 3)

1 none 66 7,772 14.09598 1.753

2 1 or 2 70 7,986 14.10568 1.770

3 none 69 8,116 14.70623 3.180

13 none 78 9,044 16.19526 12.708

23 1 or 2 76 9,461 17.91227 44.769

24 3 plus 58 9,508 21.18747 95.543
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flight DISTRESS TEMP DATE Z (Computed) P (Y = 3)

25 (Challenger) MISSING 31 9,524 25.92117 99.959

Table 3 shows the results when the OLOGIT is used and DISTRESS is regressed on DATE and TEMP.

Challenger and one flight with missing data are excluded, yielding an N of 23 cases.

Table 3. Ordered logit model for shuttle data.

A tabular representation of ordered logistic regression.

Here is how to interpret the results. The likelihood-ratio χ2 for the model (sometimes referred to as L2) is

like the global F statistic in an OLS regression. It tests the hypothesis that at least one of the independent

variables in the model has a nonzero effect. When the null hypothesis is true (all independent variables have

zero effects), the model χ2 statistic has a χ2 distribution with degrees of freedom (df) equal to the number of

variable coefficients that are estimated. In this case, its value is 12.32 with 2 df. This is highly significant; the p

value of .0021 tells us that, if the null hypothesis of all effects equaling zero is true, if we drew 10,000 samples

this same way, we would expect only 21 of them to have coefficient estimates that differed this much from 0.

This tells us that DATE and/or TEMP has a statistically significant effect on the number of thermal distress

incidents.

Ordinary least squares regression offers an R2 statistic that measures the strength of the association between

the dependent and independent variables. Several pseudo-R2 statistics have been proposed for logit and

OLOGITs. One of the most popular is McFadden’s R2, which is used here. The pseudo R2 ranges between

0 and 1; the bigger the value, the stronger the relationship is. For this model, its value is .247. (Formulas

for various pseudo R2 can be found in Long & Freese, 2014; Allison (2013) discusses the pros and cons of

various measures.)

How do we interpret the coefficients themselves? As is the case with OLS regression and many other

methods, the signs and statistical significance of the coefficients provide a basic way of interpreting results.

The positive coefficient for DATE means that the likelihood of having more distress incidents did increase with

time. Similarly, the negative coefficient for TEMP implies that colder temperatures increased the likelihood

of having more distress incidents. The standard errors, z values, p values, and confidence intervals indicate

that coefficients of this magnitude were unlikely to arise because of chance factors alone (e.g., because of

drawing an atypical sample).

The cut points or threshold parameters may seem unusual to those not familiar with ordinal models. Indeed,

they have little intuitive appeal and researchers usually spend little or no time on them when discussing

results. But, they do provide important information for computing other quantities of interest; in this case, we

will soon see how they can be used to estimate the riskiness of each flight. Here, the estimated values of

16.4281 and 18.1223 tell us the following. Since there are three possible values for Y (i.e., M = 3), the values

for observed Y are estimated to be
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As already noted, looking at the signs and statistical significance of coefficients provides us means for

interpreting them: Are effects positive or negative and do they significantly differ from zero? But, by

themselves, signs and statistical significance give little feel for the practical significance of the findings. Lower

temperatures increased the riskiness of a flight, but by how much? In practice, what exactly does a −.173

coefficient for TEMP mean?

There are several ways to make the results more tangible. Many find it useful to think in terms of the odds of

an event occurring, and how such odds are expected to change as X changes. When Y has only two possible

values—for example, 1 = success, 0 = failure—the odds can be expressed as

For example, if the probability of success is .6 for a case, the probability of failure is .4, and the odds of

success are 1.5. Conversely, if the probability of success is .25, the probability of failure is .75, and the odds

of success are .25/.75 = 1/3.

Ordinal variables can have more than two outcomes, so multiple measures of odds can be computed. If the

categories are 1, 2, 3,…, M, the odds formulas can be written as

For example, if there is a .2 probability that y = 1, there is a .80 probability that y will be greater than 1, so the

odds of getting a value greater than 1 are .8/.2 = 4. Or, if there is a .70 probability that y will equal 1, 2, or 3,

the probability of getting a value greater than 3 is .3, and the odds of getting a value greater than 3 are .3/.7

= .429.

Now, suppose a one-unit increase in X multiplies the odds of achieving a higher valued outcome by 1.25,
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that is, makes the odds 25% greater. If the odds were 1 before the increase, they would be 1.25 after, which

means that the probability of having a higher value would now be 1.25/(1 + 1.25) = 55.6%. If the odds of

getting a higher value before X increased were 2, after the increase they would be 2.5 and the probability of

a higher valued outcome would be 2.5/(1 + 2.5) = 71.4%.

In the case of ordinal regression, we are interested in how the odds of getting higher values on the ordinal

variable Y are affected by changes in the Xs. One of the reasons the OLOGIT is so popular is because the

effect of X on the odds is easily calculated. To estimate the effects of increases in X on the odds of having

a higher value on Y, we exponentiate the coefficients, that is, compute ebx. The resulting quantities are then

referred to as odds ratios because they are the odds of having a higher value on Y after the increase in X

divided by the odds before the increase. As in the previous examples, this ratio will be the same regardless

of what the odds were before X increased. Equivalently, if we want to see the percentage change in the odds

after a one unit change in X, we can use the formula (Long & Freese, 2014)

Table 4 shows the results when the coefficients are exponentiated.

Table 4. Odds ratios for shuttle data.

A tabular representation of ordered logistic regression with coefficients exponentiated.

For TEMP, the odds ratio is exp(−.173) = .841. This means that, with each 1 degree increase in temperature,

the odds of obtaining a higher valued outcome on the observed y get multiplied by .841; or, equivalently,

decline by 100*exp(−.173) – 1) = 15.9%. For DATE, each additional day increases the odds of a higher

outcome by 0.3% (which may not seem like much, but remember, the launches took place over several

hundred days).

While many like odds ratios—they are somewhat more tangible and intuitive than the original

coefficients—other approaches can provide more or alternative insights. It often helps to plug in some

hypothetical or real data values to get a better feel for the coefficients’ meaning. For example, with shuttle

Flight 13, the temperature was 78 °F on launch date and date equaled 9044. Hence, for Flight 13, the

estimated value of the underlying latent variable is

Note that this value is slightly less than the lowest threshold estimate of 16.4281. But, this is just an estimate

of the underlying value of Y*, and the true value of the unobserved variable may be higher or lower. This

uncertainly is reflected in the formulas that predict the probability for each of the observed values of Y given

the observed values of the Xs. For Flight 13, we can therefore next compute

Page 9 of 25

http://srmstage.sage.gvpi.net/base/pdf/FoundationEntry/ordinal-regression-models#s9781526421036.i235
http://srmstage.sage.gvpi.net/base/pdf/FoundationEntry/ordinal-regression-models#s9781526421036.i107


Hence, for Flight 13, which occurred more than a year earlier than Challenger under much warmer conditions,

the most likely outcome (55.79%) was that there would be no damage to the booster joints. However, there

was still more than a 40% chance Flight 13 would experience one or more distress incidents. In fact, Flight

13 did not have any problems.

Now, consider shuttle Flight 25, Challenger. Remember, Challenger’s own data were not used when

calculating these parameters. Hence, it would have been possible for a NASA official to use these numbers on

launch day to predict the likelihood of a problem. On Challenger’s launch date, DATE equaled 9,524, and the

temperature at launch time was 31° F (the previous coldest launch had been at 53° F). Hence, for Challenger,

This value is much higher than the upper threshold estimate of 18.1223 presented by the OLOGIT. Using the

formulas presented earlier and the threshold estimates, we can now compute the probabilities of Challenger

falling into each of the three different distress categories:

Hence, based on the experience from the previous 24 flights, there was virtually no chance that Challenger

would experience no damage to its joint seals. Indeed, it was a virtual certainty (99.96%) that Challenger

would experience 3 or more distress incidents.

Admittedly, ordinal regression models may not have been widely known back in 1986. But, if we run OLS

regression instead, the predicted value for Challenger is 4.63, which is not a legitimate value for Y as it is
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currently coded, but is consistent with the finding that launching on that day was very risky. Indeed, one

engineer working on Challenger, Bob Ebeling, did try to stop the launch—but his warnings were not heeded

(Berkes, 2016).

In this example, we computed the expected probabilities for two of the actual flights. But, we could just

as easily have used hypothetical values—for example, we could have calculated the risk of Challenger if it

had waited 10 more days and the temperature was 75° F (the estimated probability of 3 or more distress

incidents would have only been 53.76% in that case). Stata and many other statistical packages make

such calculations easy. Long and Freese (2014) and Williams (2012) give many examples of how predicting

the likelihood of events using real or hypothetical values can make the substantive meaning and practical

significance of results clearer.

Model Comparisons

The model χ2, also called L2, tests whether all the variables in the model have zero effects. However,

researchers are often interested in testing hypotheses about subsets of variables. For example, a researcher

might want to compare a model that has X1, X2, and X3 included, with a model that has the same three

variables plus X4 and X5. We refer to the first model as the constrained model because, by not including X4

and X5, we in effect constrain their effects to equal 0. For example, X1, X2, and X3 might be demographic

variables, and we might want to see whether attitudinal measures X4 and X5 tell us anything more than the

demographic variables do. The unconstrained model is the model that allows X4 and X5 to have nonzero

effects.

In logistic regression, we can do this via χ2 contrasts. The simplest formula is

When the null hypothesis is true—the effects of the additional set of variables are all zero—the difference

between the model χ2s of the constrained and unconstrained models has a χ2 distribution with df equal to the

number of constraints. A large L2 value suggests that at least one of the added variables has an effect that

differs from zero.

The shuttle data are too small and have too few variables to demonstrate these principles, so here a new

example is presented to show how this works in practice. The European Social Survey (ESS) is a cross-

national study that has been conducted every 2 years across Europe since 2001. For this example, the

2012 ESS survey for Great Britain (ESS Round 6: European Social Survey Round 6 Data (2012)) is used.

The study has 2,286 respondents, of which 2,159 (94.4%) have complete data for the variables used in this

analysis. Although cases have unequal probabilities of selection, weighting had little effect on the results so

to simplify the presentation they were not used. Williams (2016) shows how models can be estimated when

data are weighted.
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Respondents were asked the extent to which they agreed or disagreed with the following statement: “Gay

men and lesbians should be free to live their own life as they wish.” The possible responses were 1 = strongly

disagree, 2 = disagree, 3 = neither agree nor disagree, 4 = agree, and 5 = strongly agree. We use this as our

response variable, HMSFREE. Thus, the higher the reported value, the more supportive the person is of gay

and lesbian rights.

The explanatory variables are the responses to the following questions. In some cases, the original coding

has been modified or reversed to make interpretation easier.

• AGEDECADE—Age of respondent (in decades, e.g., a value of 3.4 means 34 years old)

• FEMALE—Gender of respondent (1 = Female, 0 = Male)

• LIFEWORSE—“For most people in this country life is getting worse rather than better” (coded 1 =

strongly disagree to 5 = strongly agree)

• HINCFEL—“Which of the descriptions on this card comes closest to how you feel about your

household’s income nowadays?” (1 = living comfortably on present income, 2 = coping on present

income, 3 = finding it difficult on present income, 4 = finding it very difficult on present income)

• FEELECON—“On the whole how satisfied are you with the present state of the economy in this

country?” (11 point scale where 0 = extremely satisfied and 10 = extremely dissatisfied).

Age and gender are demographic variables. We might reasonably expect that age is related to attitudes

about gays and lesbians because of changing attitudes across time. Gender might also be related whether

women tend to be more tolerant than men of different lifestyles. HINCFEL and LIFEWORSE measure different

aspects of satisfaction with one’s life. The theoretical argument for including them as explanatory variables

is less clear. Dissatisfaction with one’s life could lead to less tolerance toward others, but not necessarily.

FEELECON measures satisfaction with the entire economy but not necessarily satisfaction with one’s own

life.

Therefore, we are interested in estimating two models. The first model includes only the demographic

variables, while the second model adds the attitudinal variables. The two models are presented in Tables 5

and 6, along with an explanation of how they can be compared.

Table 5. Constrained model.

A tabular representation of ordered logistic regression in the constrained model.

Not surprisingly, older people are more likely to disagree that gays should be able to live their lives the way

they want. Conversely, women are more supportive. The model χ2 and the z values for the two demographic

variables are all highly significant.

Table 6. Unconstrained model.

A tabular representation of ordered logistic regression in the unconstrained model.

The difference between the two model χ2s is 164.71 – 137.25 = 27.46 with 3 df. This value is highly significant,
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indicating that at least one of the attitudinal measures has a statistically significant effect. For LIFEWORSE

and HINCFEL, less satisfaction is negatively associated with support for gay and lesbian rights, but neither

effect is significant at the .05 level. For FEELECON, higher dissatisfaction levels are positively related to

support for gay rights.

However, the use of χ2 statistics as goodness of fit measures has sometimes been criticized. When sample

sizes are large, it is much easier to accept (or at least harder to reject) more complex models because the χ2

test statistics are designed to detect any departure between a model and observed data. That is, adding more

terms to a model will always improve the fit, but with a large sample, it becomes harder to distinguish a “real”

improvement in fit from a substantively trivial one. Likelihood-ratio tests therefore often lead to the rejection of

acceptable models, and models become less parsimonious than they need to be.

Therefore, as many have noted, including J. Scott Long (1997) and Adrian E. Raftery (1995), information

measures—in particular the Bayesian information criterion (BIC) and the Akaike information criterion

(AIC)—have become increasingly popular. The BIC and AIC statistics are appropriate for many types of

statistical methods (e.g., OLS regression), and are not just limited to logistic regression. The basic idea

is to compare the relative plausibility of two models rather than to find the absolute deviation of observed

data from a particular model. Unlike many measures, the information measures have penalties for including

variables that do little to improve fit. Particularly with large samples, the information measures can lead

to more parsimonious but adequate models. There are different formulas for these measures (see Long &

Freese, 2014, for a discussion). It really does not matter which we use, so long as we are consistent when

making comparisons between models.

When comparing two models, the model with the smaller BIC value is preferred. The same is true with AIC.

How much one model is preferred over the other depends on the magnitude of the difference. For BIC, Raftery

(1995) proposed the guidelines presented in Table 7:

Table 7. BIC guidelines.

Absolute difference Evidence

0–2 Weak

2–6 Positive

6–10 Strong

>10 Very strong

Returning to our earlier constrained and unconstrained models, the BIC and AIC statistics, along with the χ2

contrast presented earlier, are shown in Table 8.
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Table 8. BIC, AIC, and likelihood-ratio tests.

A tabular representation of the likelihood-ratio test.

The BIC statistic does favor the unconstrained model, but, by Raftery’s criteria, the difference between the

model BIC values (4,855.055 − 4,850.623 = 4.432) provides only positive support for the unconstrained

model, not strong or very strong. The AIC statistic also supports the unconstrained model.

Often, as in this case, the Likelihood-ratio χ2 contrast and the BIC and AIC statistics all support the same

model. The measures do not always agree though, and researchers will then have to decide which model they

think is most defensible. Further, even though in this case all three measures preferred the unconstrained

model that does not mean that all the variables that were added in the unconstrained model should have

been added. The z values for the individual variables suggest that FEELECON should be in the model, but

the statistical case for including LIFEWORSE and HINCFEL is shakier.

Testing Model Assumptions

Regardless of how reasonable any of the models presented so far may be, none of them should be accepted

without further testing. The OLOGIT or proportional odds model makes certain assumptions about the data.

If these assumptions are not met, the use of the model may be inappropriate. The assumptions of the model

are explained in this section, and then ways for testing the assumptions are presented.

Williams (2016) presents hypothetical examples that illustrate what the proportional odds assumption is and

when the assumptions are and are not violated. The first example presents an ideal (and probably never

realized) situation, whereas the second example is typical of what is often encountered in practice.

Table 9. Hypothetical example—Perfect proportional odds/parallel lines.

A tabular representation of Perfect Proportional Odds or Parallel Lines.

In Table 9, looking at the column labeled 1 versus 2, 3, 4, we see that men are 3 times as likely to be in one

of the higher categories as they are to be in the lowest category, so the odds for men are 3 (i.e., 750/250).

Women, on the other hand, are 9 times as likely to be in one of the higher categories, so the odds for women

are 9 (i.e., 900/100). Ergo, the ratio of the odds for women to men (i.e., the odds ratio) is 9/3 = 3.

Similarly, for the column labeled 1, 2 versus 3, 4, men are equally likely to be in either the two lowest or

the two highest categories, yielding odds of 1. Women are 3 times as likely to be in one of the two higher

categories as they are to be in one of the two lowest categories, yielding odds of 3. The odds ratio for women

compared to men is therefore once again 3.

Finally, the odds ratio is again 3 for the 1, 2, 3 versus 4 column. The Brant test (to be explained shortly) says

the data meet the proportional odds assumption perfectly.

Table 10. Hypothetical example—Proportional odds violated.
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A tabular representation of proportional odds violated.

Table 10 presents a second example. In this case, women are again clearly more likely to agree than men

are; and yet, the assumptions of the OLOGIT are not met. Gender has its greatest effect at the lowest levels

of attitudes—that is, as the odds ratio of 3 indicates, women are much less likely to strongly disagree than

men are. But other differences are smaller—that is, in the 1 and 2 versus 3 and 4 cumulative logit, the odds

ratio is only 1.5, and in the last cumulative logit, 1, 2, 3 versus 4, the odds ratio is only 1.28. The odds for

women being in a higher category are consistently greater than the odds for men (i.e., women are more likely

to agree than men are). But, because the odds ratios are not the same across the different regressions, the

Brant test is highly significant (40.29 with 2 df). Thus, even though women do hold more favorable attitudes

than do men, the assumptions of the proportional odds model are not met. There is an ordinal relationship

between gender and attitudes, but it is not the kind of ordinal relationship that meets the assumptions of the

proportional odds model.

There are several ways to test the proportional odds or parallel lines assumption of the OLOGIT. The most

common is the Brant test (Brant, 1990; see Long, 1997, for details on how the test is computed). In Stata,

the Brant test can be calculated using Long and Freese’s (2014) brant command, which is part of their SPost

suite of commands. For the unconstrained model with the ESS, the Brant test (Table 11) suggests that the

model assumptions are violated:

Table 11. Brant test of parallel regression/proportional odds assumption.

A tabular representation of brant test of parallel regression.

The Brant test for all the variables, 43.90 with 15 df, is highly significant. At least one variable in the model

violates the assumptions of the proportional odds model. However, Brant tests can also be done on individual

variables. The tests reveal that only HINCFEL clearly violates the model assumptions. While the Brant test

for AGEDECADE is significant at the .05 level, Williams (2006) argues that, since multiple variables are being

tested, more stringent α levels should be used (e.g., .01), before deciding that any given variable violates

proportional odds.

The detail option (see Table 12) for Long and Freese’s brant command clarifies why the OLOGIT is also

sometimes called the parallel lines model, the parallel regressions model, or the cumulative logit model.

Table 12. Estimated coefficients from cumulative logits.

A tabular representation of coefficients from cumulative logits.

In the cumulative logits, the ordinal variable is dichotomized. First it is Category 1 versus all higher categories,

then Categories 1 and 2 versus all higher categories, and so on. If the assumptions of the OLOGIT are

met, the coefficients (other than the constants) should be the same for each logistic regression—that is, the

regression lines will be parallel, differing only in their intercepts. To the extent that the coefficients are not

identical, the assumptions of the OLOGIT are violated. Because of sampling variability we never expect the

proportional odds assumption to hold perfectly in a data set, but the Brant test tells us whether the violations
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of assumptions are too large just to attribute to chance factors alone. Visual inspection suggests that the

coefficients for HINCFEL vary greatly across models.

What are the implications of these violations of assumptions? Some would suggest that, when assumptions

are violated, a multinomial logit model (MLOGIT) should be used instead. Table 13 shows what happens

when an MLOGIT model is estimated:

Table 13. MLOGIT.

A tabular representation of multinomial logistic regression.

The MLOGIT model is much less parsimonious. The OLOGIT estimated five coefficients for five variables;

MLOGIT estimates 20. Interpretation is certainly possible, but it is far more complicated than it is with the

OLOGIT. Does the OLOGIT model really need to be totally abandoned, even when as few as one or two

variables are problematic? The GOLOGIT model, discussed shortly, suggests that a less extreme approach

may be possible.

Alternative Ordinal Models

The OLOGIT or proportional odds model may be the most popular ordinal regression model. But, it is not

the only one. Depending the circumstances, some models may work just as well or better. Some of the most

common alternatives are discussed next.

Ordered Probit

The ordered probit model is very similar to the ordered logit, except the error term is assumed to have a

normal distribution with mean 0 and variance 1, that is, N(0, 1). In practice, the ordered logit and ordered

probit models almost always lead to the same substantive conclusions. Some prefer the ordered logit

because they like using the exponentiated coefficients or odds ratios to discuss effects, and the ordered probit

model does not have that nice mathematical property. In most cases, though, the choice between logit and

probit is based on whatever the most common practice is within a discipline.

GOLOGIT

When the assumptions of the OLOGIT are violated, some authors recommend that the MLOGIT model

be used instead. The MLOGIT model makes no assumptions about the ordering of a variable; indeed,

categories could be randomly renumbered and the MLOGIT model would give the same results. However,

since the MLOGIT model ignores all the information about the ordering of categories, it estimates many more

parameters, making it less parsimonious and more difficult to interpret. Williams (2006, 2016) suggests that

another alternative also be considered: the GOLOGIT model. (GOPROBIT models can also be estimated if

a researcher prefers them; conclusions are usually the same either way.) The GOLOGIT model can relax

the proportional odds assumption for those variables that violate it, while keeping the constraints on those
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variables that do not violate it. It therefore avoids the use of a model whose assumptions are violated

(OLOGIT) while also avoiding the use of a model that is much less parsimonious (MLOGIT) than it needs to

be.

The GOLOGIT model (Williams, 2006) can be written as

where M is the number of categories of the ordinal dependent variable.

When M = 2, the GOLOGIT model is equivalent to the binary logistic regression model. The proportional odds

or parallel lines model is also a special case of the GOLOGIT model. The parallel lines model can be written

as

The formulas for the parallel lines model and GOLOGIT model are the same, except that in the parallel lines

model, the betas (but not the alphas) are the same for all values of j.

As noted previously, a key problem with the parallel lines model is that its assumptions are often violated,

while common solutions like MLOGIT often go too far in the other direction, estimating far more parameters

than is really necessary. Another special case of the GOLOGIT model overcomes these limitations. In the

partial proportional odds model, some of the beta coefficients can be the same for all values of j, while others

can differ. For example, in the following, the betas for X1 and X2 are the same for all values of j, but the betas

for X3 are free to differ.

Consider again the example from the ESS. The assumptions of the OLOGIT were violated, but only one

variable, HINCFEL, was clearly problematic. Table 14 shows the parameter estimates when a GOLOGIT or

partial proportional odds model is used instead.

Table 14. GOLOGIT model for ESS data.

A tabular representation of generalized ordered logit estimates.

Like MLOGIT, there are M − 1 panels. But, the interpretation is very different. GOLOGIT is like running a

series of logistic regressions, where the ordinal variable has been collapsed into a dichotomy. In the first
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category, it is Category 1 versus Categories 2, 3, 4, and 5. In the second panel, it is Categories 1 and 2 versus

3, 4, and 5; then 1, 2, and 3 versus 4 and 5; and finally 1, 2, 3, and 4 versus 5. In each panel a positive

coefficient means that increases in X make it more likely that a respondent will have one of the higher values

for Y, while negative coefficients for X mean that increases in X make it more likely the subject will be in the

current category of Y or a lower one.

At first glance, the GOLOGIT model might not appear to be very parsimonious compared to MLOGIT; but,

other than HINCFEL, the coefficients are the same for each variable across panels. Hence, only 8 unique

beta coefficients need to be examined, just 3 more than OLOGIT, and 12 less than the 20 coefficients that

would be produced by MLOGIT.

Because the repetition of identical parameters is potentially confusing, Williams (2016) suggests alternate,

more parsimonious ways of presenting GOLOGIT results. In Table 15, only one set of coefficients is presented

for explanatory variables that meet the proportional odds assumption, while M − 1 coefficients are presented

for those that do not. The overall p value is based on a test of the joint significance of all coefficients for the

variable that are in the model.

Table 15. OLOGIT and partial proportional odds models for gays and lesbians should be free to live their lives

as they want.

Model 1:

Proportional odds
Model 2: Partial proportional odds

Explanatory variables P value Coef.
Overall p

value

SD vs D, N,

A, SA

SD, D vs N,

A, SA

SD, D, N vs

A, SA

SD, D, N, A

vs SA

Feelings about

household income
.064 −.100 .000 −.957 −.387 −.217 −.037

Life is getting worse .369 −.046 .3633 −.047

Age (in decades) .000 −.248 .000 −.251

Gender (1= female, 0 =

male)
.000 .388 .000 .387

Satisfaction with state of

economy
.000 .112 .000 .113

This model is only slightly more difficult to interpret than the earlier parallel lines model, and it provides

insights that were previously obscured. Effects of the constrained variables can be interpreted much as

before. Older people are less supportive of gay rights, females are more supportive, and those expressing
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dissatisfaction in different areas of their personal life also tend to be less supportive.

For HINCFEL, the differences from before are largely a matter of degree. All the coefficients are negative, but

they get smaller in magnitude across each panel. Those with high levels of dissatisfaction are less supportive

of gay rights, and are especially likely to express strong disapproval. Furthermore, the effect of HINCFEL is

highly significant in the GOLOGIT model whereas it was not in the OLOGIT model. Hence, if we had only

estimated an OLOGIT, not only would we have misestimated the effects of HINCFEL, we might have even

erroneously concluded that it did not have any effect at all.

To sum up, with the GOLOGIT or partial proportional odds model, the effects of the variables that meet the

parallel lines assumption are easily interpretable (we interpret them the same way as we do in OLOGIT).

For other variables, an examination of the pattern of coefficients reveals insights that would be obscured

or distorted if a parallel lines model were estimated instead. An MLOGIT analysis might lead to similar

conclusions as GOLOGIT, but there would be many more parameters to look at, and the increased number

of parameters could cause some estimated effects to become statistically insignificant.

Williams (2006) outlines procedures besides Brant that are more flexible for identifying which variables violate

the proportional odds assumption. Williams (2006) also suggests different criteria for when a GOLOGIT

model should be used. When relatively few variables violate the proportional odds assumption, a partial

proportional odds model can avoid violating the assumptions of the OLOGIT while at the same maintaining

most of OLOGIT’s advantages with regard to ease of interpretation. If several variables violate proportional

odds, however, a GOLOGIT model provides little parsimony and researchers may prefer to use the better

known MLOGIT model or some other ordinal alternative. Williams (2016) also suggests several ways that

the patterns of coefficients can yield substantive insights that might be missed by an OLOGIT model. In this

case, the coefficients for HINCFEL differed in both their magnitude across panels, and also in their statistical

significance. In other cases, the signs for a variable may actually switch from being positive to negative. Such

a pattern might suggest, for example, that women take less extreme positions, high or low, than do men.

Important relationships might be missed or obscured if only an OLOGIT is used.

Interval Regression

We earlier gave the example where Income might be coded in categories like ≤$1,000 = 1, $1,001–$10,000

= 2, $10,001–$30,000 = 3, $30,001–$60,000 = 4, $60,001, or higher = 5. Or, rather than give an exact value

for their years of education, respondents might be asked if they had no education, some grade school, grade

school graduate, some high school, and so on. Such variables are common in research. Rather than give

the exact value of their income (or education, or years employed), respondents are asked to tell what interval

they fall into. For example, someone whose income was $13,782 would code themselves as a 3. Note that

the lower and upper bounds (≤ $1,000 and > $60,001) are not given. These can be treated as negative infinity

and positive infinity, although the real values will usually fall into a much smaller range. Interval regression

programs (e.g., intreg in Stata) typically ask the user to specify what the lower and upper bounds are for the

interval a respondent falls into.
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Here, two examples, one real and one hypothetical, are used to illustrate how interval regression works.

StataCorp (2019) provides the first example. Women were asked via a questionnaire to indicate a category

for their yearly income from employment. The categories were less than $5,000, $5,001–$10,000, … ,

$25,001–$30,000, $30,001–$40,000, $40,001–$50,000, and more than $50,000. To use Stata’s intreg, the

user must create two variables, wage1 and wage2, containing the lower and upper endpoints of the wage

categories. The dependent variables can be thought of as measuring income in thousands of dollars, but

instead of having the exact value for income only the interval in which it falls is known. Other variables in

the model include NEV_MAR (0 = has been married, 1 = never married), RURAL (0 = urban resident, 1

= rural resident, SCHOOL (years of schooling), TENURE (job tenure, in years), AGE (age in years), and

AGESQUARED (AGE * AGE). Table 16 shows the results.

Table 16. Interval regression model for women’s yearly income.

A tabular representation of interval regression for women’s annual income.

As Stata Corp (2019, p. 1064) points out, “Because the conditional mean modeled by interval regression is

linear, the coefficients are interpreted the same way they are in ordinary least-squares regression.” Therefore,

the coefficients in interval regression are very easy to interpret. The results indicate that, on average,

those who have never been married make $208 less a year (but the effect is not statistically significant).

Rural residents average $3,043 a year less than nonrural residents. Each additional year of schooling is

worth $1,335 a year more, and each year in the job is worth another $800. The effects of age are less

straightforward, because the squared term makes the relation between age and income curvilinear. Effects

can easily be computed for specific values of age, however.

While the results are reasonable, it is not clear how accurate they are. Do a few intervals provide a good

substitute for exact values? Therefore, a hypothetical data set can be constructed for a second example

where we know what the true parameter values are. The data are constructed so that y is a continuous

variable that ranges from about −70 to 88. It is normally distributed. All 1,000 cases have a unique value for

y. ycat is a collapsed, ordinal version of y. Table 17 shows how the collapsing was done.

Table 17. Hypothetical continuous Y collapsed into 5 intervals.

A tabular representation of Y collapsed into five intervals.

Table 18 illustrates the results of an interval regression, where t is regressed on x1, x2, and x3:

Table 18. Interval regression model with hypothetical collapsed data.

A tabular representation of interval regression.

Again, a nice feature of interval regression, as opposed to other ordinal methods, is that we can interpret

parameters the same way we do the parameters from an OLS regression. There is no need to compute odds

ratios or predicted probabilities like with other methods. For example, in this case, a one unit increase in x1 is

expected to produce, on average, a 1.22 unit increase in y.
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Table 19 shows the results when OLS regression is used on the original, noncollapsed y. The closer these

are to the interval regression estimates, the better interval regression is working.

Table 19. OLS regression model with hypothetical noncollapsed data.

A tabular representation of OLS regression model.

In this particular example, interval regression does remarkably well. Its coefficients, standard errors, so on

are very similar to those produced by OLS regression on the uncollapsed y variable. That is, even though

the collapsed y (which only has 5 possible values) loses much of the information contained in the original y

(which has 1,000 different values), we still reach very similar conclusions about the effects of the x variables

on y.

Of course, if we knew the exact values of y, we would not be using interval regression. It is therefore

suggested that the results from the interval regression model (Stata Corp, 2019) be compared with the results

of an ordered probit model. In this case (see Table 20), the interval regression model produces almost the

exact same model χ2 and log likelihood as does the ordered probit model and also has very similar z values

for the individual coefficients.

Table 20. Ordered probit model with hypothetical data.

A tabular representation of ordered probit regression model.

But, the coefficients from interval regression are much easier to interpret. If, on the other hand, the ordinal

probit model had fit much better than the interval regression model did, the researcher might want to modify

the interval regression model (e.g., take logs of the interval points) or use some other ordinal method instead.

It is important to remember that this example is “rigged” in interval regression’s favor. Interval regression

assumes that variables are normally distributed, and the hypothetical data set was constructed accordingly.

You cannot always count on interval regression working this well, and researchers should check whether its

results are consistent with those provided by other ordinal methods.

Other Ordinal Regression Models of Interest

Several other ordinal regression models may potentially be of interest to researchers and are briefly

discussed here.

Scoring Methods

Daniel A. Powers and Yu Xie (2008) note that various scoring methods are sometimes used to assign values

to ordinal variables. For example, if an interval ranged between 5 and 10, the midpoint of 7.5 might be used;

if another interval ranged between 15 and 30 the midpoint value assigned would be 22.5. While often done,

midpoints can be poor estimates of the true values; for example, Powers and Xie say that for a category like
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“less than 12 years of schooling” a value such as 5.5 would likely greatly underestimate years of schooling.

There is also the problem of how to score an interval that does not contain an upper bound (e.g., greater than

50). Powers and Xie also discuss more complicated scoring schemes which use normal transformations or

require the use of auxiliary information. A good scoring scheme may require a lot of knowledge of the topic

and measures and statistical sophistication by the researcher.

Heterogeneous Choice or Location Scale Models

Both Allison (1999) and Williams (2009, 2010) note that OLS regression assumes that error terms are

homoscedastic—for example, the error variances for men are equal to the error variances for women. If the

assumption is violated—error variances are heteroskedastic—OLS estimates of variable coefficients remain

unbiased, but the standard error terms and significance tests will be distorted. However, in ordered logit

and probit models, the consequences of heteroscedasticity can be much greater. Coefficient estimates can

be biased and cross-group comparisons in particular can be misleading. Allison (1999) gives an example

where apparent discrimination against women in the tenure process may be an artifact of failing to control for

differences in residual variability between men and women. Williams (2009, 2010) argues that heterogeneous

choice models (also called location-scale models) can address the problem. J. S. Long and S. A. Mustillo

(2018) suggest a different approach using predictions and marginal effects which they say avoids making

what may be questionable assumptions.

Stereotype Logistic Model (SLM)

The SLM, also called the stereotype ordered regression model (Anderson, 1984; Long & Freese, 2014), has

also been proposed as a way to deal with violations of the proportional odds assumption. These models can

be helpful when the relevance of the ordering of categories is unclear. For example, there might be two or

three underlying latent variables that give rise to the observed y. These different dimensions can be estimated

and categories can even be reordered if deemed appropriate.

Stage Models

Andrew S. Fullerton and Jun Xu (2016; see also Fullerton, 2009) have outlined several models—cumulative,

stage, and adjacent—and shown how they can be modified to relax the parallel regressions assumption. A

stage (also called continuation-ratio) model might be appropriate for a dependent variable where respondents

go through a series of steps. For example, rather than give their exact number of years of education,

respondents might be asked whether they had no education, some grade school, graduated from grade

school, some high school, and so on. People can go on to higher stages but cannot go back to lower ones

(e.g., one can go on to get more education but cannot lose the education one already has; whereas with

attitudes, change is possible in either direction). Depending on the nature of the dependent variable and the

goals of the analysis, these may be preferable to the other models that have been discussed.
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Rank-Ordered Logit

Sometimes respondents may be asked to do several rankings. For example, the top five job applicants might

be ranked from 1 to 5. Or, subjects might be given a list, and asked to indicate which item is most important

to them, which is the second most important, then the third, and so on. Rank-ordered logit regressions (Long

& Freese, 2014) assess how important different attributes are in determining ratings—for example, how much

impact does the education, years of job experience, gender, race, and other characteristics of job applicants

have on how they are ranked? Further, rank-ordered logit models can assess how characteristics of the rater

affect how they rate—for example, are women less influenced by a candidate’s gender than men are?

Conclusion

There are many statistical techniques available when the dependent variable is ordinal. The ordered logit and

ordered probit models may be the most popular. But, when their assumptions are violated, other techniques,

such as GOLOGITs, may be preferable. In still other cases, such as when options are ranked or when upper

and lower boundaries for categories are clearly stated, other ordinal regression techniques may be more

powerful or informative. Researchers have many options for analyzing ordinal dependent variables, and they

should think carefully about which best meets the specific needs of their data and topic.
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